

- 1. Aufgabenstellung und Zielsetzung
- 2. Randbedingungen
- 3. Vorgehensweise / Methodik der Systemanalysen
- **4.** Eingangsparameter & Methodik Marktsimulation
- **5.** Eingangsparameter & Methodik Flow-Based Market Coupling
- **6.** Eingangsparameter & Methodik Netzanalysen
- 7. Eingangsparameter & Methodik Stabilitätsanalysen
- 8. Identifikation der Grenzsituation
- **9.** Marktsimulation
- 10. Netzanalysen
- 11. Bilanzielle Spannungs- und Blindleistungsanalysen
- **12.** Fazit

Aufgabenstellung und Zielsetzung

- Mit den Systemanalysen 2020 erfüllen die Übertragungsnetzbetreiber die gesetzliche Verpflichtung nach §3 Absatz 2 der Verordnung zur Regelung der Beschaffung und Vorhaltung von Anlagen in der Netzreserve (Netzreserveverordnung NetzResV).
- Die Übertragungsnetzbetreiber ermitteln damit den Bedarf an Netzreserve in Form von Vorhaltung von Erzeugungskapazitäten zur Gewährleistung der Sicherheit und Zuverlässigkeit des Elektrizitätsversorgungssystems, insbesondere für die Bewirtschaftung von Netzengpässen und für die Spannungshaltung.
- Die den Systemanalysen zu Grunde liegenden Annahmen, Parameter, Szenarien und Methoden wurden zwischen den Übertragungsnetzbetreibern und der Bundesnetzagentur bis zum 01. Dezember 2019 abgestimmt. Sie umfassen:
 - Analyse der Zeithorizonte 01.04.2020 31.03.2021 (t+1) und 01.04.2024 31.03.2025 (t+5)
 - Energiewirtschaftliche Rahmendaten, insbesondere
 - Erzeugungsportfolio (konventionell und EE)
 - Last- und Verbrauchsentwicklung
 - Handelskapazitäten unter Berücksichtigung der Rahmenbedingungen des "Clean Energy Package" (CEP) der EU
 - Brennstoffpreise
 - Netzausbauzustand

- 1. Aufgabenstellung und Zielsetzung
- 2. Randbedingungen
- 3. Vorgehensweise / Methodik der Systemanalysen
- **4.** Eingangsparameter & Methodik Marktsimulation
- 5. Eingangsparameter & Methodik Flow-Based Market Coupling
- **6.** Eingangsparameter & Methodik Netzanalysen
- 7. Eingangsparameter & Methodik Stabilitätsanalysen
- 8. Identifikation der Grenzsituation
- **9.** Marktsimulation
- 10. Netzanalysen
- 11. Bilanzielle Spannungs- und Blindleistungsanalysen
- **12.** Fazit

Randbedingungen (I)

Eingangsparameter der BA2020 wurden am 01.12.2019 fixiert

- Kohleausstieg: Auf Grund des zum Zeitpunktes der Festlegung der Eingangsparameter der BA 2020 noch nicht bekannten Ausstiegspfades für Stein- und Braunkohle KW, wurden Annahmen getroffen. Lineare Degression des Kraftwerksparks wurden angenommen, ca.10 GW Steinkohle und ca.6 GW Braunkohle bis t+5.
- Netzausbau: Der für die jeweiligen Zeithorizonte der BA2020 unterstellte Netzausbauzustand basiert auf dem EnLAG-/BBPIG-Monitoring Q3/2019 ("real case"-Annahmen), was zum Zeitpunkt der Eingangsdatenabstimmung der aktuellste Kenntnisstand war.
- Vorgaben des CEP: In den BA2019 wurden die Vorgaben des CEP, insbesondere des Flow-Based Market Coupling (FBMC) in der Marktsimulation und die Einhaltung von freien Mindesthandelskapazitäten (minRAM) für (t+1; 20%) und (t+5; 60%). Die minRAM-Vorgaben des CEP (§§13 und 14)* sind noch immer Gegenstand der energiepolitischen Diskussion.
- ⇒ Änderungen der vorgenannten Rahmenbedingungen werden die Handels- und Lastflusssituationen maßgeblich beeinflussen und damit eine Neuberechnung des Redispatch- und Netzreservebedarfs erfordern.

*CEP-Entwurf von November, Stand 25.02.2019 §§16 des CEP

Randbedingungen (II)

CEP-Vorgaben | Aktionspläne | Derogations

Am 04.07.2019 trat die Binnenmarktverordnung (EU 2019/943) in Kraft. Gemäß Art. 16 der BMVO sind die EU-Mitgliedsstaaten ab dem 01.01.2020 dazu verpflichtet, mindestens 70% der grenzüberschreitenden Übertragungskapazitäten für den grenzüberschreitenden Stromhandel zur Verfügung zu stellen.

Berücksichtigung Aktionspläne

Mit Art. 16 (3) wird den Mitgliedsstaaten die Möglichkeit eingeräumt, Aktionspläne und Derogations einzureichen, sollte die Erhöhung der minRAM auf 70% strukturelle Engpässe in einer Gebotszone zur Folge haben, wegen derer absehbar ist, dass die Mindestkapazität nicht zur Verfügung gestellt werden kann. Aus den Aktionsplänen soll hervorgehen, wie die Mindesthandelskapazität sukzessive und spätestens bis zum 31.12.2025 erreicht werden kann. Bis zur Frist für die Abstimmung der Eingangsdaten für die Bedarfsanalyse zum 01.12.2019 hatten Deutschland und Polen darüber informiert, dass sie beabsichtigen, einen Aktionsplan einzureichen.

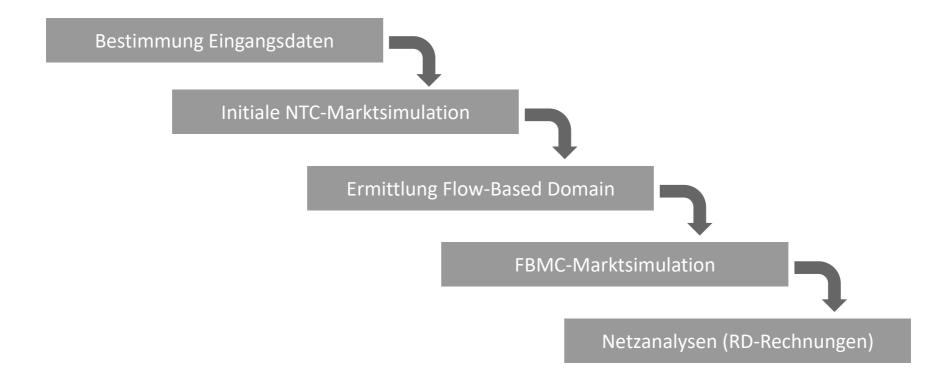
Die Berücksichtigung der Aktionspläne erfolgte in Abhängigkeit vom Zeitpunkt des Bekanntwerdens der Information und den verfügbaren Details. Für die verbleibenden Länder wurde eine Mindestkapazität von 70% unterstellt (Details Methodik vgl. Folie 43).

- Deutschland: linearer Anstieg der minRAM unter der Annahme eines Startwertes von 10% zum 01.01.2020 berücksichtigt
- Polen: Berücksichtigung wegen Prozessfortschritts nur für t+5, wegen Limitierung des BA-Modells statt der vorgesehenen leitungsindividuellen minRAM nur Abbildung einer marktgebietsscharfen minRAM

Berücksichtigung Derogations

Mangels konkreter Daten wurden Derogations nicht berücksichtigt. Stattdessen wurde für die betroffenen Mitgliedsstaaten eine minRAM von 70% angesetzt.

- 1. Aufgabenstellung und Zielsetzung
- 2. Berücksichtigung neuer politischer Rahmenbedingungen
- 3. Vorgehensweise / Methodik der Systemanalysen
- **4.** Eingangsparameter & Methodik Marktsimulation
- 5. Eingangsparameter & Methodik Flow-Based Market Coupling
- **6.** Eingangsparameter & Methodik Netzanalysen
- 7. Eingangsparameter & Methodik Stabilitätsanalysen
- 8. Identifikation der Grenzsituation
- **9.** Marktsimulation
- 10. Netzanalysen
- 11. Bilanzielle Spannungs- und Blindleistungsanalysen
- **12.** Fazit



Vorgehensweise / Methodik der Systemanalysen

Eingangsparameter & Methodik – Marktsimulation **Allgemeines** Konventioneller Kraftwerkspark DE KWK < 10MW Erneuerbare Energien (EE) in DE Offshore Windparks DE Verbrauch/Höchstlasten DE NTC Europa Kostenkomponenten

Allgemeines

Marktsimulation - Eckpunkte

- Zeithorizonte und Grenzsituationen:
 - t+1 (2020/21):
 - GS Winter ("Starkwind/Starklast") mit NTC und FBMC
 - (initialer) Jahreslauf mit NTC und FBMC
 - t+5 (2024/25):
 - GS Winter ("Starkwind/Starklast") mit NTC und FMBC
 - Jahreslauf mit NTC und FBMC
- Zu Grunde gelegtes Wetterjahr:
 - 2012 → Konsistente Datengrundlage auf Basis eines Wetterjahres
 - Jahreslauf mit 8.760 h (da 2012 ein Schaltjahr war, wird der 31.12.2012 abgeschnitten)
 - Grenzsituation mit Vor-/Nachlauf

Allgemeines

Marktsimulation - Eckpunkte

Szenariodefinition:

 Blockscharfe Modellierung von DE und AT. Für sonstige benachbarte Länder inkl. IT, HU, SI und SK (ausgenommen SE, NO und DKE) wird der thermische KW-Park ebenfalls blockscharf modelliert.

Datengrundlage:

- BNetzA KW-Liste vom 06.08.2019 (Bestandsliste, Rückbauliste und Zubauliste)
- Erkenntnisse zur Überführung von Braunkohlekraftwerken in die Sicherheitsbereitschaft
- ÜNB interne Datengrundlage (z.B. ERRP-Daten, weitere bekannte Stilllegungsanzeigen bzw. Zubauten)
- In den BA2020 findet für deutsche Kraftwerke die **Nettonennleistung** Berücksichtigung in der Marktsimulation. Für ausländische Kraftwerke wird ebenfalls die Nettonennleistung herangezogen.
- Weitere Details zur Bestimmung des konventionellen KW-Parks sind in den nachfolgenden Folien detailliert dargestellt.

4.	Eingangsparameter & Methodik – Marktsimulation
	Allgemeines
	Konventioneller Kraftwerkspark DE
	KWK <10MW
	Erneuerbare Energien (EE) in DE
	Offshore Windparks DE
	Verbrauch/Höchstlasten DE
	NTC
	Europa
	Kostenkomponenten

Marktsimulation - In- und Außerbetriebnahme konventioneller Kraftwerkspark

- Berücksichtigung von Stilllegungsanzeigen bzw. konkreter Stilllegungsabsichten
 - Kraftwerke mit Stilllegungsanzeige werden beginnend mit dem Stilllegungsdatum nicht mehr im Portfolio der Marktkraftwerke berücksichtigt; dies ist unabhängig davon, ob eine tatsächliche Stilllegung erfolgt oder diese wegen Systemrelevanz untersagt wird
 - Außerbetriebnahme-Zeitpunkte der Kernkraftwerke basieren auf den gesetzlichen Fristen nach Atomgesetz¹
- Für den deutschen konventionellen Kraftwerkspark wird kein pauschales Lebensdauerende von im Markt befindlichen Kraftwerken angesetzt

Marktsimulation - Abbildung des Kohleausstiegs

Herleitung der Mantelzahl

Zeithorizont	Datum	Steinkohle [GW]	Braunkohle [GW]	Kommentar
	06.08.2019	22,9	18,9	Bestand Markt ¹⁾ - und vorl. stillgelegte Kraftwerke ²⁾
T+1	31.12.2020	20,2	17,6	Interpolation
T+2	31.12.2021	17,6	16,3	Interpolation
T+3	31.12.2022	15,0	15,0	vgl. Entwurf Steinkohleausstiegsgesetz
T+4	31.12.2023	14,0	14,1	Interpolation
T+5	31.12.2024	13,0	13,3	Interpolation
	31.12.2025	12,0	12,4	Interpolation
	31.12.2026	11,0	11,6	Interpolation
	31.12.2027	10,0	10,7	Interpolation
	31.12.2028	9,0	9,9	Interpolation
	31.12.2029	8,0	9,0	vgl. Entwurf Steinkohleausstiegsgesetz

- Um den Kohleausstiegspfad mit IBN von Datteln 4 in 2020 abzubilden, wurde der Startwert der Interpolation um die installierte Leistung von Datteln 4 erhöht
- vorläufig stillgelegte Steinkohle-KW: nur Bexbach und Weiher

- Grundlage ist ein Entwurf des Kohleausstiegsgesetzes vom 28.08.2019, nach dem zum 01.10.2020 das Kohleverstromungsverbot für die im Rahmen der ersten Ausschreibung bezuschlagten Steinkohle-Kraftwerke beginnen sollte
- Es wird ein paralleler Ausstiegspfad der Braunkohle-Kraftwerke angenommen
- Modellierung T+1: Alle nicht explizit stillgelegten Kohlekraftwerke (Bestand Markt) werden berücksichtigt
 - Sommerhalbjahr (01.04 30.09.): Keine Änderung
 - Winterhalbjahr (01.10. 31.03.): Verfügbarkeit aller Steinkohlekraftwerke und der Braunkohlekraftwerke im rheinischen Revier wird leistungsanteilig (pro rata) so reduziert, dass die installierte Leistung im Winterhalbjahr dem Zielwert der installierten Leistung in T+1 entspricht (siehe Tabelle oben),
- Modellierung T+5: 9,9 GW der ältesten Steinkohlekraftwerke in DE und 5,6 GW der Braunkohlekraftwerke (Rheinisches Revier und KW Jänschwalde)
 werden im Vergleich zum Bestand außer Betrieb gesetzt und nicht modelliert.

Marktsimulation – Installierte konventionelle Leistungen t+1 (Sommerhalbjahr)

Nettonennleistung t+1 (2020/21) [MW]	Kernenergie	Braunkohle	Steinkohle	Erdgas	Kuppelgas	Mineraloelpro dukte	Abfall	Wasser	Biogas	Sonstige	Summe Markt	Reserve	Sicherheitsbe reitschaft
Baden-Württemberg	1.310	0	4.425	678	0	276	94	1.830	0	10	8.622	1.693	0
Bayern	2.698	0	829	2.745	0	201	214	565	0	29	7.282	2.636	0
Berlin	0	0	653	1.224	0	34	36	0	0	0	1.947	0	0
Brandenburg	0	3.393	0	448	101	334	118	10	0	24	4.427	184	930
Bremen	0	0	772	459	160	86	91	0	0	18	1.586	0	0
Hamburg	0	0	1.794	150	0	0	24	0	0	0	1.968	0	0
Hessen	0	34	731	852	0	25	112	643	0	28	2.424	675	0
Mecklenburg-Vorpommern	0	0	514	319	0	0	17	19	0	0	869	0	0
Niedersachsen	2.696	0	2.933	3.085	289	75	73	220	52	0	9.423	0	0
Nordrhein-Westfalen	0	9.210	7.705	7.809	1.337	338	468	363	0	397	27.628	0	1.448
Rheinland-Pfalz	0	0	13	1.795	0	0	108	0	0	98	2.014	256	0
Saarland	0	0	261	155	85	0	28	45	0	42	616	1.382	0
Sachsen	0	4.325	0	647	0	17	16	1.098	0	0	6.102	0	0
Sachsen-Anhalt	0	1.104	0	941	0	213	183	80	0	0	2.520	0	0
Schleswig-Holstein	1.410	0	357	319	0	276	33	119	0	98	2.612	0	0
Thüringen	0	0	0	432	0	0	12	1.509	0	0	1.954	0	0
Luxemburg	0	0	0	0	0	0	0	1.291	0	0	1.291	0	0
Österreich	0	0	0	0	0	0	0	2.868	0	0	2.868	0	0
Summe	8.114	18.065	20.988	22.057	1.972	1.874	1.626	10.660	52	744	86.152	6.825	2.378
Nord	4.106	18.065	14.728	16.152	1.887	1.397	1.098	4.061	52	575	62.121	184	2.378
Sued	4.008	0	6.260	5.905	85	477	528	6.599	0	169	24.031	6.641	0
Summe	8.114	18.065	20.988	22.057	1.972	1.874	1.626	10.660	52	744	86.152	6.825	2.378

HINWEIS:

KWK-Anlagen < 10 MW werden separat ausgewiesen und sind hier nicht enthalten

Reserve: Derzeit (2019) kontrahierte bzw. zukünftig (ab 2020) potenzelle

Netzreservekraftwerke

Biogas: Neue Kategorie, betrifft nur explizit modellierte Kraftwerke mit biogenem

Hauptbrennstoff

Marktsimulation – Installierte konventionelle Leistungen t+5

Nettonennleistung t+5 (2024/25) [MW]	Kernenergie	Braunkohle	Steinkohle	Erdgas	Kuppelgas	Mineraloelpro dukte	Abfall	Wasser	Biogas	Sonstige	Summe Markt	Reserve ¹	Sicherheitsbe reitschaft
Baden-Württemberg	0	0	2.669	673	0	276	94	1.846	0	10	5.568	1.354	0
Bayern	0	0	0	2.745	0	108	214	565	0	29	3.661	2.554	0
Berlin	0	0	371	1.224	0	34	36	0	0	0	1.665	0	0
Brandenburg	0	1.500	0	448	101	334	118	10	0	24	2.534	184	0
Bremen	0	0	119	459	160	86	91	0	0	18	933	0	0
Hamburg	0	0	1.794	150	0	0	24	0	0	0	1.968	0	0
Hessen	0	34	731	852	0	25	112	643	0	28	2.424	675	0
Mecklenburg-Vorpommern	0	0	514	319	0	0	17	19	0	0	869	0	0
Niedersachsen	0	0	1.043	3.500	289	75	73	220	52	0	5.252	0	0
Nordrhein-Westfalen	0	5.971	4.973	7.775	1.337	338	468	363	0	421	21.646	0	0
Rheinland-Pfalz	0	0	13	1.795	0	0	108	0	0	98	2.014	256	0
Saarland	0	0	261	155	85	0	28	45	0	42	616	1.382	0
Sachsen	0	4.268	0	647	0	17	16	1.098	0	0	6.045	0	0
Sachsen-Anhalt	0	1.104	0	941	0	213	183	80	0	0	2.520	0	0
Schleswig-Holstein	0	0	64	319	0	276	33	119	0	64	875	0	0
Thüringen	0	0	0	432	0	0	12	1.509	0	0	1.954	0	0
Luxemburg	0	0	0	0	0	0	0	1.291	0	0	1.291	0	0
Österreich	0	0	0	0	0	0	0	2.868	0	0	2.868	0	0
Summe	0	12.877	12.552	22.433	1.972	1.781	1.626	10.676	52	734	64.702	6.403	0
Nord	0	12.877	8.878	16.533	1.887	1.397	1.098	4.061	52	565	47.346	184	0
Sued	0	0	3.674	5.900	85	384	528	6.615	0	169	17.356	6.219	0
Summe	0	12.877	12.552	22.433	1.972	1.781	1.626	10.676	52	734	64.702	6.403	0

HINWEIS:

KWK-Anlagen < 10 MW werden separat ausgewiesen und sind hier nicht enthalten

Reserve: Derzeit (2019) kontrahierte bzw. zukünftig (ab 2020) potenzelle

Netzreservekraftwerke

Biogas: Neue Kategorie, betrifft nur explizit modellierte Kraftwerke mit biogenem

Hauptbrennstoff

1) Im Rahmen der Eingangsdatenerstellung für die Marktsimulation wurden die Verfügbarkeiten der Netzreserve-KW mit dem Auslaufen der immissionsschutzrechtlichen Genehmigung abgeglichen.

Marktsimulation - Betriebsmodi

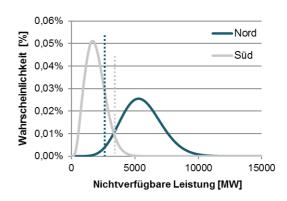
Betriebsmodi:

- Die Betriebsmodi der deutschen konventionellen KW werden in Anlehnung an den Status quo bestimmt.
- Es wird zwischen diesen Betriebsmodi unterschieden:
 - Marktbasiert: Kraftwerke, welche rein marktgetrieben eingesetzt werden. Bei Einsatz muss die eingespeiste Leistung zwischen der technischen Mindestleistung und der Maximalleistung liegen.
 - **Zwangseinsatz**: Erzeugungseinheiten, die durch Restriktionen (z.B. Industrieprozesse) eine vorzugebende (zeitvariable) Minimalleistung aufweisen und darüber hinaus zusätzlich, wenn ökonomisch sinnvoll, weitere Erzeugung für den Markt bereitstellen, bis höchstens in Höhe der (zeitvariablen) Maximalleistung. Hierzu gehören insbesondere Industriekraftwerke und Abfallbehandlungsanlagen mit einem prozessgeführten (meist temperaturunabhängigen) Must-Run Profil.
 - Zwangseinsatz mit KWK-Option: Erzeugungseinheiten, die durch Restriktionen (z.B. Industrieprozesse) eine vorzugebende (zeitvariable) Minimalleistung aufweisen und darüber hinaus zusätzlich, eine temperaturabhängige Wärmebereitstellung bedienen müssen. Wenn ökonomisch sinnvoll kann weitere Erzeugung für den Markt bereitgestellt werden, bis höchstens in Höhe der (zeitvariablen) Maximalleistung. Dies gilt für alle KWs mit Betriebsmodus "Zwangseinsatz", welche zusätzlich als KWK-Anlage gekennzeichnet sind.
 - Zwangseinsatz KW-Betreiber: Saisonales Must-Run Profil wird von den ÜNB entsprechend der Vorgaben der abgefragten KW-Betreibern umgesetzt, um lokale standortbezogene Mindesterzeugungsmengen (bspw. Braunkohlereviere) zu berücksichtigen. Es wird hierbei ein Zwangseinsatz mit minimaler Einspeiseleistung vorgegeben. Eine marktbasierte Mehrerzeugung bis höchstens in Höhe der (zeitvariablen) Maximalleistung ist möglich.

Marktsimulation - Betriebsmodi

Betriebsmodi:

- Wärmegeführt (KWK): Anlagen mit Betriebsmodus KWK laufen exakt mit dem temperaturabhängigen Must-Run Profil (bspw. Wert zum Referenzzeitpunkt oder KWK-Zeitreihe). D.h. diese Anlagen weisen eine per (temperaturabhängiger) Zeitreihe vorgegebene fixe Einspeisevorgabe auf. Es handelt sich hierbei vornehmlich um dezentrale, kleine KWK-Anlagen (Gegendruckanlagen). Die (zeitvariablen) Einspeisevorgaben können auf Grundlage der Temperaturzeitreihen des betrachteten Wetterjahres erstellt werden.
- Nicht-Wärmegeführt (KWK): Erzeugungseinheiten, die durch Restriktionen (z.B. Fernwärmeauskopplung) eine vorzugebende (zeitvariable) Minimalleistung aufweisen und darüber hinaus zusätzlich, wenn ökonomisch sinnvoll, weitere Erzeugung für den Markt bereitstellen, bis höchstens in Höhe der (zeitvariablen) Maximalleistung. Hierzu gehören insbesondere KWK-Anlagen mit einem (temperaturabhängigen) Must-Run Profil als auch Abfallbehandlungsanlagen mit einem prozessgeführten (meist temperaturunabhängigen) Must-Run Profil.


Marktsimulation - Kraftwerksnichtverfügbarkeiten Grenzsituation

■ Datengrundlage: VGB-Statistik (2007-2016)¹ und weitere Auswertungen

Energieträger	Ungeplante Nichtverfügbarkeit (Teil- und Vollausfall)	Geplante Nichtverfügbarkeit* (nur Vollausfall)	Ungeplante Nichtverfügbarkeit (nur Vollausfall)
Kernenergie	7,1%	3,0%	6,7%
Braunkohle	8,4%	3,8%	7,6%
Steinkohle	10,1%	4,5%	8,2%
Erdgas	5,8%	3,9%	5,3%
Mineralölprodukte	5,8%	6,4%	5,3%
Abfall	10,1%	4,5%	8,2%
Sonstige	5,8%	3,9%	5,3%
Pumpspeicher	1,4%	8,0%	1,4%

* basierend auf Auswertungen für die Monate Oktober bis März

- Analytisches Verfahren: Bestimmung der nichtverfügbaren Kraftwerksleistung je Region (Nord/Süd/AT) über rekursive Faltung der Kraftwerkseinheiten
- Betrachtung von Voll- und Teilausfällen
- Quantil-Auswertung der resultierenden Wahrscheinlichkeitsdichte der nichtverfügbaren Kraftwerksleistung je Region (Nord/Süd/AT)
 - Nord (5%-Quantil)
 - Süd und AT (95%-Quantil)
- Abschätzung der nichtverfügbaren Kraftwerksleistung je Energieträger über Leistungskreditbetrachtung

¹Quelle: VGB Availability of Power Plants 2007 - 2016, Edition 2017; Link: https://www.vgb.org/shop/tw103ve-ebook.html

Marktsimulation - Kraftwerksnichtverfügbarkeiten Grenzsituation

		2020/2021 (t+1)	2024/2025 (t+5)
Nord	Installierte Leistung	62,1 GW	47,3 GW
(5%-Quantil)	Nichtverfügbare Leistung	4,5 GW	4,1 GW
Süd	Installierte Leistung	24,0 GW	17,4 GW
(95%-Quantil)	Nichtverfügbare Leistung	4,4 GW	3,0 GW
AT	Installierte Leistung	13,3 GW	13,0 GW
(95%-Quantil)	Nichtverfügbare Leistung	2,3 GW	1,9 GW

	Kernenergie	Braunkohle	Steinkohle	Erdgas/Sonstige	Mineralölprodukte	Pumpspeicher
Nord (t+1)	4%	27%	31%	29%	3%	6%
Nord (t+5)	0%	24%	25%	39%	4%	8%
Süd (t+1)	27%	0%	35%	18%	2%	19%
Süd (t+5)	0%	0%	42%	27%	2%	29%
AT (t+1)	0%	0%	4%	53%	1%	41%
AT (t+5)	0%	0%	0%	57%	1%	42%

Marktsimulation - Blockscharfe Kraftwerksnichtverfügbarkeiten Grenzsituation Nord

Region	BNetzA-ID	ÜNB-ID	ÜNB	Kraftwerks-	Blockname	Energieträger	Turbinen- typ	Nettonenn- leistung [MW]	Mindest- leistung MW]	Status BA2020 t+1	Annahme Einschränkung d. Erzeugung in t+1 [MW]		Status BA2020 t+5		Verbleibende Erzeugungs- leistung t+5 [MW]
NORD	BNA1404	8646	50Hertz	Boxberg	R	Braunkohle	DT	640	305	In Betrieb	640		In Betrieb	640	0
NORD	BNA0705	7415	Amprion	Niederaußem	D		DT	297	125	In Betrieb	172	125	Nicht in Betrieb	0	0
NORD	BNA1028	7622	Amprion	Weisweiler	Н	Braunkohle	DT	656	245	In Betrieb	403	253	In Betrieb	344	312
			·			Summe Braun		1.593			1215			984	
NORD	BNA0245a	2107a	TenneT	Emden Gas	GT	Erdgas	GuD	52	25	In Betrieb	52	0	In Betrieb	52	0
NORD	BNA0604	7812	Amprion	Emsland	B2	Erdgas	GuD_DT	359	140	In Betrieb	359	0	In Betrieb	359	0
NORD	BNA0221b	7319b	Amprion	GT	Block E GTE1	Erdgas	GuD_GT	67	33	In Betrieb	67	0	In Betrieb	67	-0
NORD	BNA0548a	7834b	Amprion	Knapsack Ga	GT 12	Erdgas	GuD_GT	260	68	In Betrieb	260	0	In Betrieb	260	0
NORD	BNA0117b	7977	Amprion	Heizkraftwerk	Heizkraftwerk ł	Erdgas	DT	95	47	In Betrieb	95	0	In Betrieb	95	0
NORD	BNA0130	8338	50Hertz	Kirchmöser		Erdgas	GuD	160	110	In Betrieb	160	0	In Betrieb	160	0
NORD	BNA0136	2205	TenneT	HKW-Mitte	GuD	Erdgas	GuD	74	22	In Betrieb	74	0	In Betrieb	74	0
NORD	BNA0220	7324a	Amprion	GuD	AGuD_GT	Erdgas	GuD_GT	68	48	In Betrieb	68	0	In Betrieb	13	55
NORD	BNA1818	7307a	Amprion	Niehl 3	Niehl 31	Erdgas	GuD	460	135	In Betrieb	170	290	In Betrieb	460	-0
NORD	BNA0442	7235	Amprion	Cuno Heizkra	H6	Erdgas	GuD	417	200	In Betrieb	0	417	In Betrieb	59	358
						Summe Erdgas		2.011			1305			1.599	
NORD	BNA0607	7991	Amprion	Kernkraftwerl	KKE	Kernenergie	DT	1.336	305	In Betrieb	180	1156	Nicht in Betrieb	0	0
						Summe Kerne	nergie	1.336			180			0	
NORD	BNA1015	8201	50Hertz	Wedel	GT A	Mineralölprodu	GT	51	5	In Betrieb	45	6	In Betrieb	51	-1
NORD	BNA0141	2225	TenneT	KW Mittelsbü	GT 3	Mineralölprodu	GT	86	16	In Betrieb	51	35	In Betrieb	70	16
NORD	BNA1083	7836	Amprion	Spitzenlastan	Block 2	Mineralölprodu	GT	60	21	In Betrieb	39	21	In Betrieb	39	21
NORD	BNA0894c	8363	50Hertz	IKS PCK Sch	Block 1 SE 1	Mineralölprodu	DT	106	32	In Betrieb	0	106	In Betrieb	4	102
						Summe Miner	alölprodukte	303			135			164	
NORD	BNA0983	LUPSVia12	Amprion	PSW Viander	Maschine 2	Pumpspeicher		100	10	In Betrieb	0	100	In Betrieb	100	0
NORD	BNA0984	LUPSVia13	Amprion	PSW Viander		Pumpspeicher		100	10	In Betrieb	0	100	In Betrieb	100	0
NORD	BNA0652	8635	50Hertz	Markersbach	PSS A	Pumpspeicher		174	40	In Betrieb	97	77	In Betrieb	118	56
NORD	BNA0558	2049b	TenneT	Erzhausen	M2	Pumpspeicher		55	2	In Betrieb	8	47	In Betrieb	10	45
NORD	BNA0443	7299	Amprion	Koepchenwer	Koepchenwerk	Pumpspeicher		165	0	In Betrieb	165	0	In Betrieb	0	165
						Summe Pump		594			270			328	
NORD	BNA0086	8421	50Hertz	Reuter West	Reuter West D	Steinkohle	DT	282	160	In Betrieb	282	0	Nicht in Betrieb	0	282
NORD	BNA0147	2024	TenneT	Farge	Farge		DT	350	120	In Betrieb	350		Nicht in Betrieb	0	350
NORD	BNA0331	7494	Amprion	Scholven	С		DT	345	150	In Betrieb	345		Nicht in Betrieb	0	345
NORD	BNA0793	2027	TenneT	Heyden	4		DT	875	180	In Betrieb	418	457	In Betrieb	875	0
NORD	BNAP029	7101	Amprion	Datteln	4	Steinkohle	DT	1.055	250	In Betrieb	0	1055	In Betrieb	150	905
						Summe Steink	ohle	2.907			1395			1.025	
						Summ	e Nord [MW]	8.744			4500			4.100	

Marktsimulation - Blockscharfe Kraftwerksnichtverfügbarkeiten Grenzsituation Süd

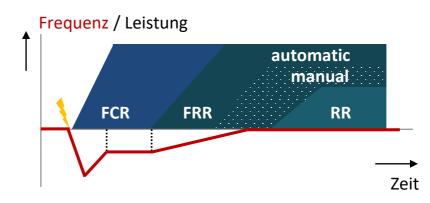
Region	BNetzA-ID	ÜNB-ID	ÜNB	Kraftwerks-	Blockname	Energieträger	Turbinen- typ	Nettonenn- leistung [MW]	Mindest- leistung MW]	Status BA2020 t+1	Annahme Einschränkung d. Erzeugung in t+1 [MW]	leistung t+1	Status BA2020 t+5	Einschränkung d. Erzeugung in	Verbleibende Erzeugungs- leistung t+5 [MW]
SÜD	BNA0626	7840a	Amprion	Kraftwerk Mai	KW3	Erdgas	GuD_GT	284	100	In Betrieb	284	0	In Betrieb	284	0
SÜD	BNA0626	7840b	Amprion	Kraftwerk Mai	KW3	Erdgas	GuD_DT	150	100	In Betrieb	150	0	In Betrieb	150	0
SÜD	BNA0745	2026a	TenneT	Franken 1	2 DT	Erdgas	GuD_DT	387	114	In Betrieb	273	114	In Betrieb	273	114
SÜD	BNA0745	2026b	TenneT	Franken 1	2 GT	Erdgas	GuD_GT	53	16	In Betrieb	53	0	In Betrieb	53	0
SÜD	BNA0016	4042	TransnetBW	Heizkraftwerk	ALT GT C	Erdgas	GT	81	55	In Betrieb	26	55	In Betrieb	26	55
SÜD	BNA0015	4002	TransnetBW	Heizkraftwerk	ALT GT E (sold	Erdgas	GT	65	40	In Betrieb	6	59	In Betrieb	24	41
						Summe Erdgas	5	1.020			792			810	
SÜD	BNA0686	4006	TransnetBW	Gemeinschaft	GKN II	Kernenergie	DT	1.310	520	In Betrieb	790	520	Nicht in Betrieb	0	0
SÜD	BNA0263	2020	TenneT	Isar 2	KKI 2	Kernenergie	DT	1.410	875	In Betrieb	398	1012	Nicht in Betrieb	0	0
						Summe Kerner	nergie	2.720			1188			0	
SÜD	BNA1004	4049	TransnetBW	Kraftwerk Wa		Mineralölprodu	GT	136	70	In Betrieb	66	70	In Betrieb	60	76
SÜD	BNA1092	2119	TenneT	Zolling	GT1 & GT2	Mineralölprodu	GT	50	3	In Betrieb	22	28	In Betrieb	0	50
						Summe Miner	alölprodukte	186			88			60	
SÜD	BNA1019	4024	TransnetBW	Wehr	Wehr Hotzenw	Pumpspeicher		227	0	In Betrieb	227	0	In Betrieb	227	0
SÜD	BNA0046	4016	TransnetBW	Säckingen	Säckingen 1	Pumpspeicher		90	0	In Betrieb	90	0	In Betrieb	90	0
SÜD	BNA0567a	ATPSKuh01	TenneT	KW Kühtai	Kühtai Ma1	Pumpspeicher		145	0	In Betrieb	145	0	In Betrieb	145	0
SÜD	BNA0975	ATPSRod21	TransnetBW	Rodundwerk I	ROD2 M1	Pumpspeicher		295	110	In Betrieb	295	0	In Betrieb	295	0
SÜD	BNA0567b	ATPSKuh02	TenneT	KW Kühtai	Kühtai Ma 2	Pumpspeicher		145	0	In Betrieb	80	65	In Betrieb	114	31
						Summe Pump	speicher	901			836			870	
SÜD	BNA0518b	4015	TransnetBW	Rheinhafen-D	RDK 8	Steinkohle	DT	834	292	In Betrieb	834	0	In Betrieb	834	0
SÜD	BNA1093	2044	TenneT	Zolling	Zolling Block 5	Steinkohle	DT	472	100	In Betrieb	313	159	Nicht in Betrieb	0	0
SÜD	BNA0434	4009	TransnetBW	Heizkraftwerk	HLB 7	Steinkohle	DT	685	180	In Betrieb	393	292	Nicht in Betrieb	0	0
SÜD	BNA0377	2042	TenneT	Staudinger	5	Steinkohle	DT	510	140	In Betrieb	0	510	In Betrieb	370	140
SÜD	BNA0646a	4036	TransnetBW	GKM	Block 8	Steinkohle	DT	90	25	In Betrieb	0	90	In Betrieb	56	34
						Summe Steink	ohle	2.591			1540			1.260	
						Sumi	ne Süd [MW]	7.418			4444			3.000	

Marktsimulation - Blockscharfe Kraftwerksnichtverfügbarkeiten Grenzsituation AT

										Annahme	Verbleibende		Annahme	Verbleibende
							Nettonenn-	Mindest-		Einschränkung	Erzeugungs-		Einschränkung	Erzeugungs-
			Kraftwerks-		-	Turbinen-	leistung	leistung	Status	d. Erzeugung in	leistung t+1	Status BA2020	d. Erzeugung in	leistung t+5
Region	ID Kraftwerk	ÜNB ID	name	Blockname	Energieträger 1	typ	[MW]	MW]	BA2020 t+1	t+1 [MW]	[MW]	t+5	t+5 [MW]	[MW]
AT	ATGSDon	ATGSDon03	Donaustadt	3	Erdgas	GUD	400	180	In Betrieb	220	180	In Betrieb	220	180
AT	ATGSMel	ATGSMel02	GUD Mellach	2	Erdgas	GUD	416	180	In Betrieb	416	0	In Betrieb	416	0
AT	ATGSMel	ATGSMel01	GUD Mellach	1	Erdgas	GUD	416	180	In Betrieb	416	0	In Betrieb	416	0
AT	ATGSTim	ATGSTim04	Timelkam GUI	4	Erdgas	GUD	405	96	in Betrieb	167	238	in Betrieb	31	374
					Summe Erdgas		1.637			1219			1.083	
AT	ATOLDummy_1	ATOLDummy_1	ATOLDummy_	EB	Mineraloelprod I	DT	100	0	In Betrieb	23	77	In Betrieb	19	81
					Summe Minera	lölprodukte	100			23			19	
AT	ATPSFes	ATPSFes01	FELDSEE 1	1	Pumpspeicher		69	0	In Betrieb	69	0	In Betrieb	0	0
AT	ATPSFes	ATPSFes02	FELDSEE 2	2	Pumpspeicher		69	0	In Betrieb	69	0	In Betrieb	0	0
AT	ATPSHau	ATPSHau01	HAUSLING 1	1	Pumpspeicher		180	0	In Betrieb	180	0	In Betrieb	0	0
AT	ATPSHau	ATPSHau02	HAUSLING 2	2	Pumpspeicher		180	0	In Betrieb	180	0	In Betrieb	0	0
AT	ATPSLim	ATPSLim21	LIMBERG-II N	21	Pumpspeicher		240	0	In Betrieb	240	0	In Betrieb	0	0
AT	ATPSLim	ATPSLim22	LIMBERG-II N	22	Pumpspeicher		240	0	In Betrieb	205	35	In Betrieb	180	98
					Summe Pumps	peicher	978			943			798	
AT	ATHDur	ATHDur02	Dürnrohr	2	Steinkohle I	DT	352	130	In Betrieb	92	260	Stillgelegt	0	0
					Summe Steinko	hle	352			92			0	
					Sum	me AT [MW]	3.067			2277			1.900	

Marktsimulation - Methodik der Regelleistungsvorhaltung

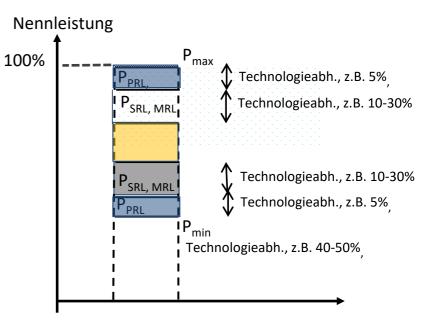
- Regelleistung für Deutschland entsprechend den Annahmen in der BA2019: +/- 4200MW
- Regelleistungsvorhaltung für Österreich wurde auf +/- 480 MW reduziert entsprechend den Werten aus dem MAF2019
- Im entfernten Ausland erfolgt keine Regelleistungsmodellierung



Marktsimulation - Methodik der Regelleistungsvorhaltung

- Beschaffung von erwartetem Regelleistungsbedarf durch Übertragungsnetzbetreiber (ÜNB) bei Erzeugungsanlagen
- Definition von Regelleistungsqualitäten untergliedert nach Aktivierungszeit und technischen Anforderungen
 - Frequency Containment Reserve (FCR)
 - Frequency Restoration Reserve (FRR)
 - Replacement Reserve (RR)

- Vereinfachte Abbildung durch Kategorisierung der Regelleistungsqualitäten je Marktgebiet
 - Primärregelleistung (PRL) → wird nachgelagert im Netzmodell modelliert
 - Sekundärregelleistung (SRL) und Minutenreserve (MRL)
 - Differenzierung der Kategorien zwischen positiver/negativer Regelleistung
- → Regelleistungsmengen je Kategorie sind durch gesamten hydrothermischen Kraftwerkspark im jeweiligen Marktgebiet vorzuhalten



Marktsimulation - Methodik der Regelleistungsvorhaltung

- Abbildung technischer Einschränkungen für jedes Kraftwerk erforderlich
 - Differenzierung der Vorhaltung nach Regelleistungsqualitäten
 - Regelleistungsvorhaltung führt bei thermischen Kraftwerken zu Teillastbetrieb und eventuell zu für die Regelleistungsvorhaltung angefahrenen Kraftwerken und damit zu höheren Systembetriebskosten
- Begrenzungen der Regelleistung je KW:
 - Obere Regelgrenze; keine Regelung über Nennleistung (ein Kraftwerk, welches mit Nennleistung einspeist kann keine positive Regelleistung mehr bereitstellen)
 - Technologieabhängige Begrenzung der Regelleistung bezogen auf die Nennleistung
 - Untere Regelgrenze; keine Regelung unter Mindestleistung (ein Kraftwerk, welches mit Mindestbetrieb einspeist kann keine negative Regelleistung mehr bereitstellen)
 - Zeitabhängige Leistungseinschränkungen durch "Must-Run" im Rahmen des KWK-Modells können obere Regelgrenze und untere Regelgrenze zusätzlich einschränken
- → RL-Potential (P_{RLneg}/P_{RLpos}) abhängig von Betriebszustand, Arbeitspunkt und Technologie des Kraftwerks

Begrenzung der Regelleistung

4.	Eingangsparameter & Methodik – Marktsimulation
	Allgemeines
	Konventioneller Kraftwerkspark DE
	KWK <10MW
	Erneuerbare Energien (EE) in DE
	Offshore Windparks DE
	Verbrauch/Höchstlasten DE
	NTC
	Europa
	Kostenkomponenten

Dezentrale KWK <10 MW

Marktsimulation - Installierte Leistung Deutschland

- Anlagenregister BAFA und Kraftwerksliste BNetzA als Datengrundlage für KWK<10MW
- Auswertung des historisch beobachteten Zubaus*:

Anlagenkategorie	Mittlerer Zubau/Jahr 2009-2018* [MW]
KWK-Anlagen < 1 MW	~ 160
KWK-Anlagen zwischen 1 MW und 10 MW	~ 180
Summe	~ 340

Installiert** [GW]	Bestand (31.12.2018)	t+1	t+2	t+3	t+4	t+5
KWK<10MW	4,9	5,2	5,5	5,8	6,1	6,4

Randbedingungen aus KWKG 2016 und 2017:

- Es wird nur zu geringfügigen Änderungen des jährlichen Zubaus von Anlagen < 1 MW kommen (Förderung nach KWKG 2016)
- Der Zubau an Anlagen zwischen 1 und 10 MW wird in Folge der Ausschreibungsmengen gem. KWKG 2017 leicht sinken
- → Annahme eines linearen jährlichen Nettozubaus an Neuanlagen von 300 MW

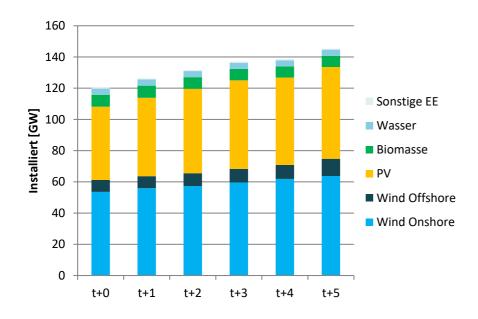
Zweistufige Regionalisierung:

- Regionalisierung Bestand gem. BNetzA-Liste und BAFA
- Modellierung Zubau für kleine Erdgas-KWK anhand Standorten der Bestandsanlagen

^{**} nur konventionelle Energieträger (ohne erneuerbare)

^{*} Quelle: Auswertung Anlagenstammdaten BAFA vom 19.09.2019

4.	Eingangsparameter & Methodik – Marktsimulation
	Allgemeines
	Konventioneller Kraftwerkspark DE
	KWK <10MW
	Erneuerbare Energien (EE) in DE
	Offshore Windparks DE
	Verbrauch/Höchstlasten DE
	NTC
	Europa
	Kostenkomponenten



Marktsimulation - Installierte Leistung Deutschland

Installiert [GW]	t+0	t+1	t+5
Wind Onshore	53,6	56,0	63,7
Wind Offshore	7,7	7,7	11,1
PV	46,9	50,2	58,8
Biomasse	7,6	7,8	7,2
Wasser*	3,9	3,9	3,9
Sonstige EE	0,6	0,6	0,6
Summe	120,4	126,2	145,3

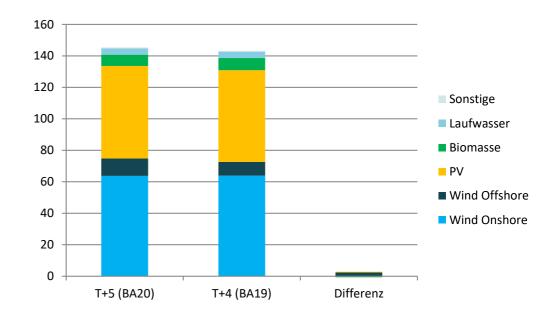
Datengrundlage:

- EEG-Mittelfristprognose 2019 (Stand Sept. 19):
 - Für PV und Biomasse jeweils "oberes Szenario"
 - Für Wind Onshore "Trendszenario"
- Sonstige EE: Fortschreibung Bestand
- Wasserkraft: Fortschreibung Bestand
- Wind Offshore: Angaben der ÜNB

Regionalisierung:

- Die Mantelzahlen werden grundsätzlich nach bekannter Methodik aus BA und NEP sowie der aktuellen Datenlage kleinräumig regionalisiert und der Netztopologie zugeordnet
- Die "Netzausbauregion" wird in der Regionalisierung berücksichtigt
- Sonderausschreibungen werden in den Jahren 2019-2022 mit jeweils 1 GW berücksichtigt

* Leistung für Laufwasser/Speicherwasser (EEG+ nicht geförderte Anlagen) wird als konstant i.H. des Bestands angenommen



Marktsimulation - Vergleich installierte Leistungen t+5_{BA20} und t+4_{BA19}

Installiert [GW]	t+5 (BA20)	t+4 (BA19)	Delta
Wind Onshore	63,7	63,9	-0,2
Wind Offshore	11,1	8,7	2,4
PV	58,8	58,3	0,5
Biomasse	7,2	7,7	-0,5
Laufwasser	3,9	4,0	-0,1
Sonstige EE	0,6	0,5	0,1
Summe	145,3	143,2	2,1

- Die Prognose für die Leistungen Wind Onshore und Photovoltaik (PV)^{1,2} ändert sich für t+5 (2024/2025) im Vergleich zur BA 2019 kaum
- Höhere installierte Leistung Wind Offshore

- 1) Zubaudeckel von 52 GW wird nicht berücksichtigt
- 2) Sonderausschreibungen von 1 GW jährlich im Zeitraum 2019-2022 werden berücksichtigt

Marktsimulation - Installierte Leistungen je Bundesland

	Installiert [GW]		Win	d Ons	hore			Wind	Offs	hore				PV				Bi	omas	se			V	Vasse	:г*			Sor	stige	EE	
Installiert [GW]	Bundesland	t+1	t+2	t+3	t+4	t+5	t+1	t+2	t+3	t+4	t+5	t+1	t+2	t+3	t+4	t+5	t+1	t+2	t+3	t+4	t+5	t+1	t+2	t+3	t+4	t+5	t+1	t+2	t+3	t+4	t+5
Baden-Württemberg	BW	1,7	1,8	2,1	2,4	2,6	0,0	0,0	0,0	0,0	0,0	6,3	6,6	6,8	6,7	7,0	0,8	0,8	0,7	0,7	0,7	0,9	0,9	0,9	0,9	0,9	0,0	0,0	0,0	0,0	0,0
Bayern	BY	2,7	2,7	2,8	3,0	3,3	0,0	0,0	0,0	0,0	0,0	14,0	15,2	16,0	15,8	16,6	1,6	1,6	1,5	1,5	1,5	2,3	2,3	2,3	2,3	2,3	0,1	0,1	0,1	0,1	0, 1
Berlin	BE	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,1	0,1	0,1	0,1	0,1	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
Brandenburg	BB	7,7	8,4	9,2	9,9	10,2	0,0	0,0	0,0	0,0	0,0	4, 1	4,5	4,9	4,8	5,1	0,5	0,5	0,5	0,4	0,4	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
Bremen	HB	0,2	0,2	0,2	0,2	0,2	0,0	0,0	0,0	0,0	0,0	0,0	0,1	0,1	0,1	0, 1	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
Hamburg	HH	0,1	0,1	0, 1	0,1	0,1	0,0	0,0	0,0	0,0	0,0	0,0	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
Hessen	HE	2,2	2,5	2,9	3,6	4,5	0,0	0,0	0,0	0,0	0,0	2,2	2,4	2,4	2,4	2,5	0,3	0,3	0,3	0,3	0,3	0,1	0,1	0,1	0,1	0,1	0,0	0,0	0,0	0,0	0,0
Mecklenburg-V orpommern	MV	3,6	4,1	4,3	4,4	4,6	1,1	1,6	1,8	1,8	2,1	2,4	2,8	3,2	3,2	3,4	0,4	0,4	0,4	0,3	0,3	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
Niedersachsen	NI	11,7	11,5	11,8	12,0	12,2	6,6	6,6	6,9	7,2	9,0	4,2	4,4	4,5	4,4	4,6	1,5	1,4	1,4	1,4	1,4	0,1	0,1	0,1	0,1	0,1	0,0	0,0	0,0	0,0	0,0
Nordrhein-W estfalen	NW	6,3	6,5	6,7	6,6	6,6	0,0	0,0	0,0	0,0	0,0	5,4	5,7	5,8	5,7	6,0	0,8	0,8	8,0	0,8	0,8	0,2	0,2	0,2	0,2	0,2	0,4	0,4	0,4	0,4	0,4
Rheinland-Pfalz	RP	3,9	3,9	4,0	4,2	4,3	0,0	0,0	0,0	0,0	0,0	2,4	2,6	2,7	2,7	2,8	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,0	0,0	0,0	0,0	0,0
Saarland	SL	0,5	0,5	0,5	0,6	0,6	0,0	0,0	0,0	0,0	0,0	0,5	0,5	0,5	0,5	0,6	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,1	0, 1	0,1	0,1	0, 1
Sachsen	SN	1,3	1,1	1,1	1,1	1,1	0,0	0,0	0,0	0,0	0,0	2,1	2,3	2,4	2,3	2,5	0,3	0,3	0,3	0,3	0,3	0,1	0,1	0,1	0,1	0,1	0,0	0,0	0,0	0,0	0,0
Sachsen-Anhalt	ST	5,3	5,2	5,1	4,9	4,8	0,0	0,0	0,0	0,0	0,0	2,8	3,0	3,2	3,2	3,3	0,5	0,5	0,5	0,4	0,4	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
Schleswig-Holstein	SH	7,0	7,0	7,0	7,1	7,1	1,7	1,7	2,1	2,1	2,1	1,9	2,1	2,3	2,3	2,4	0,5	0,4	0,4	0,4	0,4	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
Thüringen	TH	1,7	1,8	1,9	1,9	1,9	0,0	0,0	0,0	0,0	0,0	1,6	1,7	1,7	1,7	1,8	0,3	0,3	0,3	0,3	0,3	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
Deutschland		56,0	57,4	59,6	61,9	63,7	9,4	9,9	10,8	11,0	13,1	50,2	54,1	56,7	56,0	58,8	7,8	7,5	7,4	7,2	7,2	3,9	3,9	3,9	3,9	3,9	0,6	0,6	0,6	0,6	0,6

Hinweis:

 Die Regionalisierung basiert auf den aktuellen Rahmenbedingungen des EEG2017 (inkl. der resultierenden Vorzieh- und Nachholeffekte) und berücksichtigt darüber hinaus die Regelungen zum Netzausbaugebiet

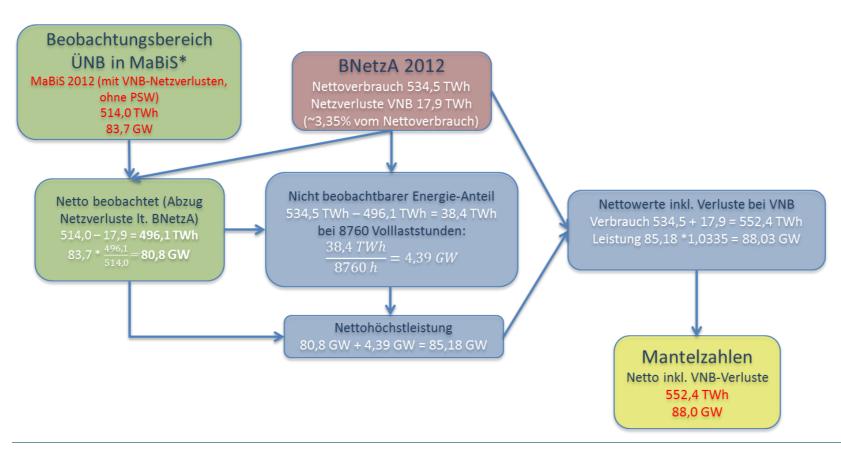
^{*} Leistung für Laufwasser/Speicherwasser (EEG+ nicht geförderte Anlagen) wird als konstant i.H. des Bestands angenommen

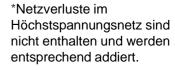
4.	Eingangsparameter & Methodik – Marktsimulation
	Allgemeines
	Konventioneller Kraftwerkspark DE
	KWK <10MW
	Erneuerbare Energien (EE) in DE
	Offshore Windparks DE
	Verbrauch/Höchstlasten DE
	NTC
	Europa
	Kostenkomponenten

Marktsimulation - Übersicht Offshore-Windparks (OWP) in Deutschland

FEP-ID	<u>OWP</u>	<u>Status</u>	<u>Netzanschlusssystem</u>	t+1 (2020/2021)	t+5 (2024/2025)
Küstenmeer	Nordergründe	In Betrieb	NOR-0-2	111	111
Küstenmeer	Riffgat	In Betrieb	NOR-0-1	113	113
N-1	Borkum Riffgrund West 1	In Planung	NOR-1-1	0	420
N-1	Borkum Riffgrund West 2	In Planung	NOR-1-1	0	240
N-1	OWP West	In Planung	NOR-1-1	0	240
N-2	alpha ventus	In Betrieb	NOR-2-1	62	62
N-2	Borkum Riffgrund I	In Betrieb	NOR-2-2	311	311
N-2	Borkum Riffgrund II	In Betrieb	NOR-2-3	450	450
N-2	Merkur Offshore	In Bau	NOR-2-3	400	400
N-2	Trianel Windpark Borkum I	In Betrieb	NOR-2-2	200	200
N-2	Trianel Windpark Borkum II	In Bau	NOR-2-2	200	200
N-3	GodeWind 1	In Betrieb	NOR-3-1	332	332
N-3	GodeWind 2	In Betrieb	NOR-3-1	252	252
N-3	Nordsee One	In Betrieb	NOR-3-1	332	332
N-3	GodeWind 4	In Planung	NOR-3-3	0	132
N-3	GodeWind 3	In Planung	NOR-3-3	0	110
N-4	Amrumbank West	In Betrieb	NOR-4-2	303	303
N-4	Kaskasi II	In Planung	NOR-4-2	0	325
N-4	Meerwind Süd/Ost	In Betrieb	NOR-4-1	288	288
N-4	Nordsee Ost	In Betrieb	NOR-4-1	288	288
N-5	Butendiek	In Betrieb	NOR-5-1	288	288
N-5	Dan Tysk	In Betrieb	NOR-5-1	288	288
N-5	Sandbank	In Betrieb	NOR-5-1	288	288
N-6	Bard Offshore	In Betrieb	NOR-6-1	400	400
N-6	Deutsche Bucht	In Bau	NOR-6-2	269	269
N-6	Veja Mate	In Betrieb	NOR-6-2	400	400
N-8	Albatros	In Bau	NOR-6-2	117	117
N-8	GlobalTech I	In Betrieb	NOR-8-1	400	400
N-8	Hohe See	In Bau	NOR-8-1	500	500
N-7	EnBW He Dreiht	In Planung	NOR-7-1	0	900
0-1	Arkona Becken Südost - Teil 1	In Betrieb	OST-1-2	250	250
0-1	Arkona Becken Südost - Teil 2	In Betrieb	OST-1-3	135	135
0-1	Wikinger - Teil 1	In Betrieb	OST-1-1	250	250
0-1	Wikinger - Teil 2	In Betrieb	OST-1-3	100	100
0-1	Wikinger Süd	In Planung	OST-1-3	0	10
0-2	Baltic Eagle - Teil 1	In Planung	OST-2-2	0	250
0-2	Baltic Eagle - Teil 2	In Planung	OST-2-3	0	226
0-3	Baltic II	In Betrieb	OST-3-2	288	288
0-4	Arcadis Ost 1	In Planung	OST-2-1	0	247
0-3	Baltic I	In Betrieb	OST-3-1	48	48,3
0-7	Nationales Testfeld	In Planung	OST-7-1	0	300
				7663	11063

4.	Eingangsparameter & Methodik – Marktsimulation
	Allgemeines
	Konventioneller Kraftwerkspark DE
	KWK <10MW
	Erneuerbare Energien (EE) in DE
	Offshore Windparks DE
	Verbrauch/Höchstlasten DE
	NTC
	Europa
	Kostenkomponenten





Verbrauch/Höchstlasten DE

Marktsimulation - Mantelzahlen und Netzverluste im HöS-Netz

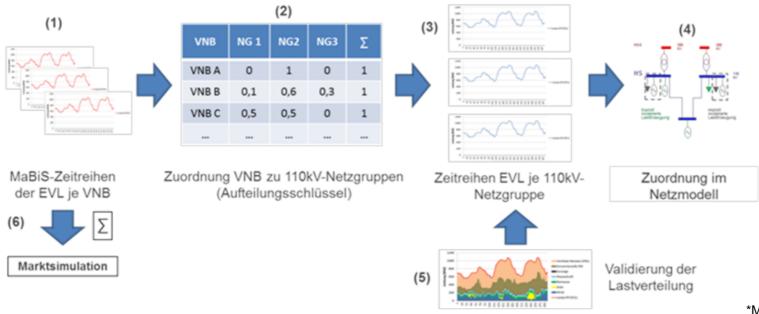
- Mantelzahlen DE (alle Zeithorizonte)
 - Höchstlast: 88,0 GW* (inkl. Netzverluste in Verteilnetz)
 - Verbrauch DE: 552,4 TWh*

Verbrauch/Höchstlasten DE

Marktsimulation - Mantelzahlen und Netzverluste im HöS-Netz

- Mantelzahlen DE (alle Zeithorizonte)
 - MaBiS*-Lastzeitreihen der VNB dienen als Basis für die Stromverbrauchsbestimmung
 - MaBiS*-Lastzeitreihen enthalten keinen eigenerzeugten Stromverbrauch der Industrie, keinen Stromverbrauch der Bahn → Delta ist "unbeobachtbare" Last

*Marktregeln für die Durchführung der Bilanzkreisabrechnung Strom



Verbrauch/Höchstlasten DE

Marktsimulation - Mantelzahlen und Netzverluste im HöS-Netz

- Die Abbildung der Last erfolgt für alle Zeithorizonte einheitlich.
- Es wird für alle Zeithorizonte die Endverbraucherlast (EVL) angesetzt, die für die Zielhorizonte als konstant angenommen wird.
- Bei der Ermittlung der Endverbraucherlastzeitreihen wird in der BA 2020 analog zur BA 2019 auf Zählwerte aus MaBiS* zurückgegriffen, die den ÜNB im Rahmen von Abrechnungsprozessen und in Form von Zeitreihen vorliegen und eine hohe regionale Auflösung ermöglicht
- Methodik zur Lastregionalisierung:

*Marktregeln für die Durchführung der Bilanzkreisabrechnung Strom (MaBiS)

4.	Eingangsparameter & Methodik – Marktsimulation
	Allgemeines
	Konventioneller Kraftwerkspark DE
	KWK <10MW
	Erneuerbare Energien (EE) in DE
	Offshore Windparks DE
	Verbrauch/Höchstlasten DE
	NTC
	Europa
	Kostenkomponenten

Marktsimulation - Methodenvorschlag für die Abschätzung von minRAM-NTCs

- Für die Zeithorizonte t+1 und t+5 der BA 2020 werden NTCs¹ unter der Berücksichtigung der minRAM-Vorgabe bestimmt:
 - Initiale NTC-Marktsimulation:
 - Marktgebietsgrenzen innerhalb der EU² (bspw. PL-CZ) → minRAM = 70%
 - DE \rightarrow minRAM = 20% (t+1) bzw. 60% (t+5)
 - NL \rightarrow minRAM = 50% (t+1) bzw. 70% (t+5)
 - PL \rightarrow minRAM = 70% (t+1) bzw. 60% (t+5)
 - FBMC-Marktsimulation: Alle Marktgebietsgrenzen innerhalb der EU², bei denen mindestens ein Marktgebiet nicht zur FB-Region³ gehört (bspw. FR-IT)
- 1. Nahes Ausland (DE, AT, BE, CZ, DKW, FR, HU, IT, NL, PL, SI, SK)
 - Abschätzung basierend auf der thermischen Grenzkuppelkapazität mit Anwendung der "Max-Regel":
 - NTC = MAX (thermische Grenzkuppelkapazität x N-1-Faktor⁴ x minRAM-Vorgabe; (thermische Grenzkuppelkapazität Kapazität der größten Leitung) x minRAM-Vorgabe;
 - Standard-NTC⁵ ohne minRAM-Anpassung)
- 2. Fernes Ausland (BG, ES, GR, HR, PT, RO) und weit entferntes Ausland (DKE, EE, FI, IE, LT, LV, SE)
 - Standard-NTC⁵ ohne minRAM-Anpassung
- 1) NTC gelten in beide Handelsrichtungen
- 2) EU = ohne GB; keine Annahme von minRAM für CH!; Länder ohne Ausweisung struktureller Engpässe und Aktionsplan-Vorhaben
- 3) FB-Region = im Zeithorizont t+5 der BA 2020 wird die Core-Region (ohne HR, RO) mittels FBMC abgebildet werden
- 4) N-1-Faktor = Abschätzung zu 0,7
- 5) Standard-NTC = der im Rahmen der Ermittlung der Eingangsdaten für die BA2020 von den ÜNB erhobene Wert (vgl. Folgefolie)

Marktsimulation - Bestimmung von "NTCs"

- Der "Standard-NTC" (ohne Min-RAM) ergibt sich für die BA aus unterschiedlichen Quellen
 - Die NTCs aus dem ENTSO-E Mid Term Adequacy Forecast (MAF) mit den Zieljahren 2021 und 2025 bilden die Hauptquelle
 - Interpolation der Zwischenjahre auf Basis der Projektdaten (IBN, "transfer capacity increase") des aktuellen **TYNDP 2018**
 - An den deutschen Grenzen werden daneben auch Meldungen der ausländischen TSO und dem Systembetrieb berücksichtigt
 - Die Systemführung liefert Informationen zur Abhängigkeit der NTCs DE-FR, DE-CH DE-NL und DE-DKW von der stündlichen Windeinspeisung (siehe Folien "C-Funktion"). Auch der grundlegende NTC t+1 wird für diese Grenzen von den Erfahrungen des Systembetriebs gespiegelt.
 - Für die Analyse der Grenzsituation werden unter Berücksichtigung der Minimum-Regel an den Ländergrenzen für t+1 und t+5 die von den benachbarten TSOs für den Starkwind/Starklast-Fall gemeldeten NTC-Werte genutzt. Für die bekannten Ländergrenzen wird analog zum Jahreslauf die C-Funktion angewendet.

Marktsimulation - Berechnung mit C-Funktion t+1

• An den Grenzen DE-NL, DE-FR und DE-CH wird für den Jahreslauf der Marktsimulation die C-Funktion verwendet. Die C-Funktion reduziert den Standard-NTC in Abhängigkeit der Windeinspeisung in Deutschland. Diese ist wie folgt parametriert:

Parametrierung C-Funktion BA2020 t+1 (2020/21)

Windpro	gnose DE	Е	xport DE [MW	/]	Import DE [MW]		/]	
von	bis	NL	FR	СН		NL	FR	СН
0	7.000	2.949	3.000	2.000	000 2.949 1.80		1.800	4.000
7.001	11.000	2.949 2.500		1.800		2.687	1.800	4.000
11.001	14.000	2.949	1.800	1.400		2.427	1.800	4.000
14.001	18.000	2.300	1.500	1.200		2.165	1.800	4.000
18.001	99.999	1.968	1.200	800		1.968	1.800	4.000

• Seitens Systemführung wurden im Vergleich zur BA19 keine Änderungen vorgenommen.

Marktsimulation - NTC-Berechnung mit C-Funktion und minRAM t+5 (1/2)

- An den Grenzen **DE-NL**, **DE-FR und DE-CH** wird für den Jahreslauf der Marktsimulation grundsätzlich die **C-Funktion** verwendet. Die C-Funktion reduziert den Standard-NTC in Abhängigkeit der Windeinspeisung in Deutschland.
- Zusätzlich wird eine Einhaltung der Mindesthandelskapazitäten ("minRAM") sichergestellt.
- Parametrierung:
 - Standard-NTC auf Basis der ÜNB-Meldungen MAF2019/TYNDP18 bilden Ausgangspunkt für C-Funktion
 - Übernahme "Windstufen" (C-Funktion) aus Angaben Systembetrieb für t+1
 - Anwendung "Max-Regel"
 unter Berücksichtigung der minRAM-Abschätzung

Parametrierung C-Funktion BA2020 t+5 (2024/25) auf Grundlage der minRAM Abschätzung 1

Windpro	gnose DE	E	xport DE [MW	<u>'</u>]	li li	/]	
von	bis	NL FR		СН	NL	FR	СН
0	7.000	7.427 3.000		2.700	7.427	3.000	4.600
7.001	11.000	7.427 2.500		2.500	7.427	3.000	4.600
11.001	14.000	7.427	2.387	2.100	7.427	3.000	4.600
14.001	18.000	7.427	2.387	1.900	7.427	3.000	4.600
18.001	99.999	7.427	2.387	1.500	7.427	3.000	4.600

→ Effektive Windabhängigkeit in t+5 nur für Grenze DE-CH sowie in geringem Maße DE-FR

1) siehe Folie 35: Methodenvorschlag für die Abschätzung von minRAM-NTCs

Marktsimulation - NTC-Berechnung mit C-Funktion und minRAM t+5 (2/2)

■ Für den Zeitraum t+5 wurden die NTC mit C-Funktion nach dem MAX-Kriterium wie folgt ermittelt:

Standard-NTC für t+5, reduziert in Abhängigkeit der Windeinspeisung (aus Angaben AGSysS für t+1)

> NTC-Werte gemäß "minRAM"-Abschätzung

> Kombination nach "Max-Regel"

Parametrierung C-Funktion BA2020 t+5 (2024/25) vor minRAM

	Windpro	gnose DE	F	xport DE [MW	/1	Ir	mport DE [MW	[MW]	
ł							<u> </u>		
Į	von	bis	NL	FR	СН	NL	FR	CH	
	0	7.000	5.000	3.000	2.700	5.000	3.000	4.600	
	7.001	11.000	5.000	2.500	2.500	4.738	3.000	4.600	
	11.001	14.000	5.000	1.800	2.100	4.478	3.000	4.600	
	14.001	18.000	4.351	1.500	1.900	4.216	3.000	4.600	
	18.001	99.999	4.019	1.200	1.500	4.019	3.000	4.600	

Parametrierung C-Funktion BA2020 t+5 (2024/25) minRAM

Windpro	gnose DE	E	xport DE [MW	/]	li li	/]		
von	bis	NL FR		CH	NL	FR	CH	
0	7.000	7.427 2.387		0	7.427	2.387	0	
7.001	11.000	7.427 2.387		0	7.427	2.387	0	
11.001	14.000	7.427	2.387	0	7.427	2.387	0	
14.001	18.000	7.427	2.387	0	7.427	2.387	0	
18.001	001 99.999		2.387	0	7.427	2.387	0	

Parametrierung C-Funktion BA2020 t+5 (2024/25) auf Grundlage der minRAM Abschätzung 1

Windpro	gnose DE	E	xport DE [MW	<u>']</u>	li	/]	
von	bis	NL	FR	CH	NL	FR	CH
0	7.000	7.427 3.000		2.700	7.427	3.000	4.600
7.001	11.000	7.427	7.427 2.500		7.427	3.000	4.600
11.001	14.000	7.427	2.387	2.100	7.427	3.000	4.600
14.001	18.000	7.427	2.387	1.900	7.427	3.000	4.600
18.001	99.999	7.427 2.387		1.500	7.427	3.000	4.600

Marktsimulation - Ermittlung der Handelskapazität an der Grenze DE-DKW (Jahreslauf/GS)

Modellierung einer windabhängigen (Onshore+Offshore) Handelskapazität an der Grenze DE-DKW auf Basis folgender Randbedingungen

Angaben	in [MW]	2020/20	21 (t+1)	2024/2025 (t+5)			
TenneT Wind (Onshore+Offshore) von	TenneT Wind (Onshore+Offshore) bis	NTC Export (DE-DKW)	NTC Import (DKW-DE)	NTC Export (DE-DKW)	NTC Import (DKW-DE)		
0	5000	2500	2500	3500	3500		
5000	6000	2500	2500	3500	2900		
6000	7000	2500	2400	3500	2800		
7000	8000	2500	2300	3500	2550		
8000	9000	2500	1400	3500	2280		
9000	10000	2500	1400	3500	2280		
10000	99999	2500	1400	3500	2280		

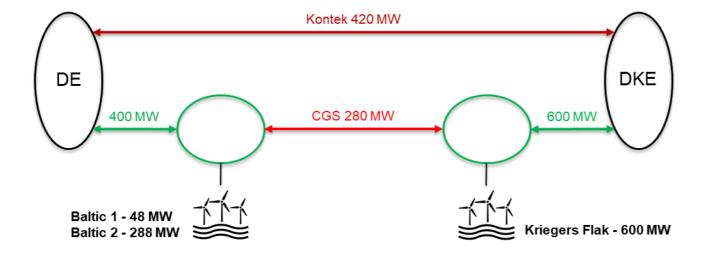
■ Die Mindest-Import-NTC von 1400 MW (t+1) und 2280 MW (t+5) ergeben sich auf Basis von TenneT's commitment unter Berücksichtigung der Inbetriebnahmen der Mittelachse (2020) und Westküstenleitung (2023).

Marktsimulation - Annahmen zu grenzüberschreitenden HGÜ-Verbindungen

- Nach Vorgabe der BNetzA werden in der Marktsimulation die Kapazitäten von grenzüberschreitenden HGÜ-Verbindungen nicht vollständig dem Handel zur Verfügung gestellt
- Im Jahreslauf werden jeweils 70% der HGÜ-Kapazität für den Handel freigegeben
- In der <u>Grenzsituation</u> werden die Kapazitäten von HGÜs zwischen DE und Skandinavien in DE-Importrichtung (Skandinavien → DE) weiter eingeschränkt.¹ Die Ermittlung der in dieser Transaktionsrichtung freizugebenden Kapazitäten erfolgt durch Interpolation zwischen einem Startwert und dem CEP-Zielwert von 70% (zum 01.01.2026; s. Tabelle).
 In Exportrichtung (DE→ Skandinavien) wird weiterhin 70% der Kapazität für den Handel freigegeben

HGÜ-Verbindung	Startwert (zum 01.01.2020)	DE-Importkapazität t+1	DE-Importkapazität t+5
Baltic Cable (DE-SE)	40%	45%	65%
Kontek (DE-DKE)	70%	70%	70%
NordLink (DE-NO)	0%	-	58%

- Die Berechnung der Startwerte erfolgte auf Basis historischer Auslastungswerte der HGÜ-Verbindungen
 - Für bestehende Verbindungen wurde das Maximum aus dem Durchschnittswert der Jahre 2016 bis 2018 und dem Durchschnittswert des Jahres 2018 angesetzt
 - Für neu hinzukommende Verbindungen (→ NordLink in 2021) wurde ein Startwert von 0% festgelegt
- Für die innerhalb der Flow-based Region befindliche HGÜ-Verbindung ALEGrO (DE-BE) wird sowohl in Ex- als auch in Importrichtung 70% der Kapazität angesetzt.²
- 1) Grund ist die Annahme, dass in Situationen mit hoher Netzbelastung in DE nur die mindestens nach CEP freizugebenden Kapazitäten dem Handel zur Verfügung gestellt werden, da höhere Importe aus Skandinavien den RD-Bedarf steigern würden.
- 2) Annahme: ALEGrO besitzt im Gegensatz zu den HGÜ-Verbindungen zwischen DE und Skandinavien keine eindeutige entlastende oder belastende Wirkung.



Marktsimulation - Abbildung Combined Grid Solution (CGS)

- Das Prinzip der sogenannten Combined Grid Soultion (CGS) ist, dass freie Kapazitäten auf dem Kabel zum Offshore
 Windpark Kriegers Flak für den Handel zwischen DKE und DE genutzt werden kann.
- Die Handelskapazität ergibt sich in Abhängigkeit der Windeinspeisung.

Marktsimulation - Vergleich NTC und minRAM in Jahreslauf und Grenzsituation t+1

S	tandard N	тс	min	RAM			
Grenze	NTC JL t+1	NTC GS t+1	minRAM (1): (Thermische Grenzkuppelkapazität - Kapazität der größten Leitung) * minRAM	minRAM (2): Thermische Grenzkuppelkapazität* 0,7 * minRAM	Initialer minRAM-NTC JL t+1	Initialer minRAM-NTC G S t+1	Bemerkung
AT-CH	1200	1000	-	-	1200	1000	NTC
AT-CZ	900	800	1388	1697	1697	1697	minRAM
AT-DE	4900	4900	1976	1603	4900	4900	NTC
AT-HU	800	300	1189	1477	1477	1477	minRAM
AT-IT	380	315	0	131	380	315	NTC
AT-SI	950	950	1131	1411	1411	1411	minRAM
BE-DE	1000	1000	-	-	700	700	0,7 HGÜ
CH-AT	1200	1200	-	_	1200	1200	NTC
CH-DE	4000	4000	-	-	4000	4000	NTC Systembetrieb
CZ-AT	900	700	1388	1697	1697	1697	minRAM
CZ-DE	2100	2800	877	835	2100	2800	NTC
DE-AT	4900	4900	1976	1603	4900	4900	NTC
DE-BE	1000	1000	_	-	700	700	0,7 HGÜ
DE-CH	2000	800	_	_	zeitvariabel	zeitvariabel	C-Funktion, 0,8 - 2,0 GW
DE-CZ	1500	2300	877	835	1500	2300	NTC
DE-DKE	600	600	_	_	420	420	0.7 HGÜ
DE-DKW	2500	2500		-	2500	2500	NTC
DE-FR	3000	1200	_	_	zeitvariabel	zeitvariabel	C-Funktion, 1,2 - 3,0 GW
DE-GB	0	0	_	_	0	0	IBN laut Projektträger 2023
DE-LU	unlimited	unlimited	_	_	unlimited	unlimited	einheitliches Marktgebiet
DE-NL	2949	1968	_	_	zeitvariabel	zeitvariabel	C-Funktion, 2.0 - 2.9 GW
DE-NO	0	0	_	_	0	0	IBN laut Q2-Monitorin in Q3 2021
DE-PL	500	300	635	612	635	635	minRAM
DE-SE	615	615	_	_	431	431	0,7 HGÜ
DKE-DE	585	585	_	_	410	410	0.7 HGÜ
DKW-DE	2500	1400	_	-	zeitvariabel	zeitvariabel	zeitvariabel, 1,4 - 2,5 GW
FR-DE	1800	1800	-	-	1800	1800	NTC Systembetrieb
GB-DE	0	0	-	-	0	0	IBN laut Projektträger 2023
HU-AT	800	600	1189	1477	1477	1477	minRAM
IT-AT	200	100	0	131	200	131	NTC / minRAM
LU-DE	unlimited	unlimited	-	-	unlimited	unlimited	einheitliches Marktgebiet
NL-DE	2949	1968	-	_	zeitvariabel	zeitvariabel	C-Funktion, 2.0 - 2.9 GW
NO-DE	0	0	-	_	0	0	IBN laut Q2-Monitorin in Q3 2021
PL-DE	3000	400	635	612	3000	635	NTC / minRAM
SE-DE	615	615	-	-	431	277	0,7 HGÜ / 0.45 HGÜ
SI-AT	950	950	1131	1411	1411	1411	minRAM

Marktsimulation - Vergleich NTC und minRAM in Jahreslauf und Grenzsituation t+5

S	tandard N	тс	min	RAM			
Grenze	NTC JL t+5	NTC GS t+5	minRAM (1): (Thermische Grenzkuppelkapazität - Kapazität der größten Leitung) * minRAM	minRAM (2): Thermische Grenzkuppelkapazität* 0,7 * minRAM	Initialer minRAM-NTC JL t+5	Initialer minRAM-NTC G S t+5	Bemerkung
AT-CH	1200	1000	-	-	1200	1000	NTC
AT-CZ	900	800	1387	1696	1696	1696	minRAM
AT-DE	5400	5400	7891	6630	7891	7891	minRAM
AT-HU	800	800	1189	1477	1477	1477	minRAM
AT-IT	680	705	470	571	680	705	NTC
AT-SI	950	950	1131	1411	1411	1411	minRAM
BE-DE	1000	1000	-	-	700	700	0,7 HGÜ
CH-AT	1200	1200	-	-	1200	1200	NTC
CH-DE	4600	4600	-	-	4600	4600	NTC Systembetrieb
CZ-AT	900	800	1387	1696	1696	1696	minRAM
CZ-DE	2100	2800	2632	2506	2632	2800	minRAM / NTC
DE-AT	5400	5400	7891	6630	7891	7891	minRAM
DE-BE	1000	1000	-	-	700	700	0,7 HGÜ
DE-CH	2700	1500	-	-	zeitvariabel	zeitvariabel	C-Funktion, 1,5 - 2,7 GW
DE-CZ	1500	2300	2632	2506	2632	2632	minRAM
DE-DKE	600	600	-	-	420	420	0,7 HGÜ
DE-DKW	3500	3500	-	-	3500	3500	NTC
DE-FR	3000	1200	-	-	zeitvariabel	zeitvariabel	C-Funktion, 1,2 - 3 GW
DE-GB	1400	1400	-	-	980	980	0,7 HGÜ
DE-LU	unlimited	unlimited	-	-	unlimited	unlimited	einheitliches Marktgebiet
DE-NL	5000	4019	-	-	zeitvariabel	zeitvariabel	C-Funktion, 4 - 5 GW
DE-NO	1400	1400	-	-	980	980	0,7 HGÜ
DE-PL	2000	1800	1904	1837	2000	1904	NTC / minRAM
DE-SE	615	615	-	-	431	431	0,7 HGÜ
DKE-DE	585	585	-	-	410	410	0,7 HGÜ
DKW-DE	3500	2280	-	-	zeitvariabel	zeitvariabel	Windabhängig, 2,3 - 3,5 GW
FR-DE	3000	3000	-	-	3000	3000	NTC Systembetrieb
GB-DE	1400	1400	-	-	980	980	0,7 HGÜ
HU-AT	800	800	1189	1477	1477	1477	minRAM
IT-AT	500	420	470	571	571	571	minRAM
LU-DE	unlimited	unlimited	-	-	unlimited	unlimited	einheitliches Marktgebiet
NL-DE	5000	4019	-	-	zeitvariabel zeitvariabel		C-Funktion, 4 - 5 GW
NO-DE	1400	1400	-	-	980	812	0,7 HGÜ / 0,58 HGÜ
PL-DE	3000	400	1904	1837	3000	1904	NTC / minRAM
SE-DE	615	615	-	-	431	400	0,7 HGÜ / 0,65 HGÜ
SI-AT	950	950	1131	1411	1411	1411	minRAM

4.	Eingangsparameter & Methodik – Marktsimulation
	Allgemeines
	Konventioneller Kraftwerkspark DE
	KWK <10MW
	Erneuerbare Energien (EE) in DE
	Offshore Windparks DE
	Verbrauch/Höchstlasten DE
	NTC
	Europa
	Kostenkomponenten

Marktsimulation - Installierte Leistung und Höchstlasten im Ausland, inkl. AT

- Abfrage bei (benachbarten) ausländischen TSO:
 - Im Rahmen der Systemanalysen 2020 wurden die (benachbarten) ausl. TSO für den Zeithorizont t+1 zu folgenden Daten abgefragt:
 - NTC, Last zu Referenzzeitpunkten
- Die Rückmeldungen werden entsprechend in den Eingangsdaten berücksichtigt.
- Mantelzahlen:
 - Die Datengrundlage für die Bestimmung der Mantelzahlen je Energieträger im Ausland (inkl. AT) orientiert sich an den von den ausländischen TSO gemeldeten Werten für den Midterm Adequacy Forecast (MAF 2019): 2021 (t+1), 2025 (t+5), jeweils die base cases
 - Die Lastzeitreihen (Jahreslauf) für das Ausland werden erstmals ohne weitere Anpassung der Datenbasis von ENTSO-E übernommen. Es werden die Lastzeitreihen des Wetterjahres 2012 verwendet, die von ENTSO-E mit einer neuen Methodik konsistent für alle Marktgebiete und das Szenariojahr 2021 hergeleitet wurden und im MAF 2019 Anwendung fanden. Diese Zeitreihen sind auch Grundlage für die Anpassungen der Lastzeitreihen für die Grenzsituation SWSI
 - Die Informationen des konv. Kraftwerkspark im Ausland entstammen ebenfalls der Datenbasis von ENTSO-E.

Marktsimulation - Installierte Leistungen t+1 (2020/21)

2020/2021 (t+1)	AT	BE	СН	CZ	DKW	DKE	FR	HU	IT	LU	NL	PL	SI	SK
Kernenergie	0,0	5,9	2,9	4,0	0,0	0,0	60,1	1,9	0,0	0,0	0,5	0,0	0,7	2,8
Braunkohle	0,0	0,0	0,0	5,1	0,0	0,0	0,0	0,9	0,0	0,0	0,0	7,6	1,1	0,3
Steinkohle	0,4	0,6	0,0	0,4	1,3	0,3	2,9	0,2	6,0	0,0	4,0	14,5	0,0	0,9
Erdgas	4,3	5,3	0,0	1,4	0,4	0,5	6,8	2,3	30,8	0,0	12,5	2,0	0,3	0,7
Mineraloelprodukte	0,2	0,1	0,0	0,0	0,1	0,2	1,6	0,4	0,9	0,0	0,0	0,0	0,0	0,0
Sonstige	1,0	1,2	0,8	1,7	0,7	0,3	6,8	0,5	6,2	0,1	4,5	6,8	0,1	0,1
Summe konv. Kapazitäten	5,8	13,3	3,7	12,7	2,5	1,4	78,3	6,1	44,0	0,1	21,5	30,9	2,3	4,8
Pumpspeicher	3,5	1,3	4,1	1,2	0,0	0,0	3,6	0,0	7,6	0,0	0,0	1,6	0,2	1,0
Speicherwasser	2,5	0,0	8,3	0,7	0,0	0,0	8,4	0,0	10,0	0,0	0,0	0,2	0,0	0,0
Schwellwasser	1,5	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
Laufwasser	4,6	0,1	4,1	0,4	0,0	0,0	13,6	0,1	5,7	0,0	0,0	0,5	1,0	1,5
Summe Wasserkraft	12,1	1,4	16,5	2,3	0,0	0,0	25,7	0,1	23,2	0,0	0,0	2,4	1,2	2,5
Wind Onshore	3,7	2,8	0,1	0,3	3,9	0,8	19,1	0,3	10,9	0,2	4,5	6,5	0,0	0,0
Wind Offshore	0,0	2,3	0,0	0,0	1,6	0,6	0,0	0,0	0,0	0,0	2,4	0,0	0,0	0,0
PV	2,5	5,1	2,8	2,3	0,8	0,3	14,3	3,6	23,3	0,2	6,9	1,2	0,3	0,6
Sonstige_EE	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
Summe Kapazitäten EE	6,2	10,1	2,9	2,6	6,3	1,7	33,3	3,9	34,2	0,4	13,8	7,7	0,3	0,6
Gesamt	24,1	24,8	23,1	17,6	8,8	3,1	137,3	10,1	101,4	0,5	35,4	41,0	3,8	7,9

Marktsimulation - Installierte Leistungen t+5 (2024/25)

2024/2025 (t+5)	AT	BE	СН	CZ	DKW	DKE	FR	HU	IT	LU	NL	PL	SI	SK
Kernenergie	0,0	0,0	2,9	4,0	0,0	0,0	61,8	1,9	0,0	0,0	0,5	0,0	0,7	2,8
Braunkohle	0,0	0,0	0,0	5,1	0,0	0,0	0,0	0,7	0,0	0,0	0,0	7,6	0,8	0,2
Steinkohle	0,0	0,6	0,0	0,4	1,2	0,3	0,0	0,2	6,0	0,0	4,0	15,8	0,0	0,7
Erdgas	3,4	7,8	0,0	1,4	0,4	0,5	7,4	2,1	30,2	0,0	11,0	2,0	0,3	0,7
Mineraloelprodukte	0,2	0,1	0,0	0,0	0,2	0,2	0,2	0,4	0,9	0,0	0,0	0,0	0,0	0,0
Sonstige	1,0	1,2	0,8	1,4	0,5	0,2	6,5	0,4	6,2	0,1	4,4	6,6	0,2	0,1
Summe konv. Kapazitäten	4,5	9,8	3,8	12,3	2,3	1,3	75,9	5,7	43,4	0,1	19,8	32,0	2,0	4,5
Pumpspeicher	4,2	1,4	4,1	1,2	0,0	0,0	3,6	0,0	7,6	0,0	0,0	1,5	0,5	1,0
Speicherwasser	2,5	0,0	8,3	0,7	0,0	0,0	8,4	0,0	10,4	0,0	0,0	0,2	0,0	0,0
Schwellwasser	1,8	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
Laufwasser	4,6	0,1	4,1	0,4	0,0	0,0	13,6	0,1	5,7	0,0	0,0	0,5	1,0	1,5
Summe Wasserkraft	13,1	1,5	16,5	2,3	0,0	0,0	25,7	0,1	23,6	0,0	0,0	2,2	1,5	2,5
Wind Onshore	5,5	3,4	0,2	0,5	4,0	1,0	26,5	0,3	12,1	0,4	5,7	7,0	0,0	0,1
Wind Offshore	0,0	2,3	0,0	0,0	1,6	1,0	2,9	0,0	0,0	0,0	5,2	0,0	0,0	0,0
PV	5,0	7,6	4,0	3,0	1,0	0,4	23,9	4,9	26,5	0,3	10,9	3,5	0,4	0,6
Sonstige_EE	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
Summe Kapazitäten EE	10,5	13,3	4,2	3,5	6,6	2,4	53,3	5,2	38,6	0,6	21,8	10,5	0,4	0,7
Gesamt	28,2	24,6	24,4	18,1	8,9	3,7	154,9	11,0	105,6	0,7	41,7	44,7	3,9	7,7

Marktsimulation - Kontrahierte ReserveKW Ausland (DE-ÜNB und APG)

- In den Zeithorizonten der Systemanalysen 2020 ist derzeit **keine** Kraftwerkskapazität im Ausland kontrahiert.
- Es besteht ein gesichertes RD-Potenzial in AT in Höhe von 1,5 GW

Marktsimulation - Höchstlasten t+1 (2020/21) und t+5 (2024/25)

- Höchstlasten für GS "Starkwind/Starklast" im Ausland:
 - Verwendung aktueller Rückmeldungen der ausländischen TSO (alternativ: letztjährige Rückmeldungen). Liegen keine Rückmeldungen vor, werden die Werte für den Zeithorizont 2021 aus dem aktuellen europäischen Midterm Adequacy Forecast 2019 (MAF) verwendet
 - Keine zeithorizontabhängige Unterscheidung der Lasten SWSL

[GW]	t+1	t+5	Kommentar
AT	11,6	11,6	Rückmeldung T+1
BE	13,2	13,2	Rückmeldung T+1
CH	9,3	9,3	Rückmeldung T+1
CZ	10,1	10,1	Rückmeldung T+1
DKE	2,3	2,3	Rückmeldung T+1
DKW	3,7	3,7	Rückmeldung T+1
ES	41,8	41,8	Rückmeldung T+1 BA19
FI	15,8	15,8	2021 - MAF2019
FR	87,4	87,4	Rückmeldung T+1
GB	55,5	55,5	2021 - MAF2019
HU	6,7	6,7	Rückmeldung T+1
IE	5,5	5,5	2021 - MAF2019
IT	52,0	52,0	Rückmeldung T+1 BA19
LU	1,1	1,1	2021 - MAF2019
NI	1,7	1,7	2022 - MAF2019
NL	18,2	18,2	Rückmeldung T+1
NO	24,9	24,9	2021 - MAF2019
PL	27,0	27,0	Rückmeldung T+1 BA19
PT	8,9	8,9	2021 - MAF2019
SE	22,6	22,6	Rückmeldung T+1 BA19
SI	2,4	2,4	Rückmeldung T+1
SK	4,1	4,1	Rückmeldung T+1

Hinweis: Die hier genannten Werte stellen die Höchstlasten in der modellierten synthetischen Woche dar und können entsprechend der unterschiedlichen Lastverläufe je Land an unterschiedlichen Zeitpunkten der Woche auftreten.

4.	Eingangsparameter & Methodik – Marktsimulation
	Allgemeines
	Konventioneller Kraftwerkspark DE
	KWK <10MW
	Erneuerbare Energien (EE) in DE
	Offshore Windparks DE
	Verbrauch/Höchstlasten DE
	NTC
	Europa
	Kostenkomponenten

Kostenkomponenten

Marktsimulation - Brennstoff- und CO2-Preise t+1 (2020/21) und t+5 (2024/25)

- Ableitung der Brennstoffpreise für Rohöl, Erdgas und Kraftwerkssteinkohle anhand der Interpolation zwischen den jeweiligen historischen Preisen im Jahr 2017 und den prognostizierten Preisen im Szenario "New Policies" des World Energy Outlook 2018 (WEO2018).
- konstant angenommene Braunkohle- und Kernbrennstoff Preise.
- Ableitung der CO₂-Preise anhand der durchschnittlichen Future Preise für die Jahre 2019 bis 2025.

	Rohöl [€ ₂₀₁₇ /MWh]	Erdgas [€ ₂₀₁₇ /MWh]	Steinkohle [€ ₂₀₁₇ /MWh]	Braunkohle [€ ₂₀₁₇ /MWh]	Kernbrennstoff [€ ₂₀₁₇ /MWh]	CO₂-Preise [€/t]
(t+1)	36,1	22	9	3,0	1,4	25,2
(t+5)	46,1	25,3	8,8	3,0	1,4	27,3

5. Eingangsparameter & Methodik – Flow-Based Market Coupling

Prozesskette
Parametrierung und Arbeitshypothesen
FB-Region und CNECs
Generation-Shift-Keys (GSK)
PSTs und HGÜs
Langfristhandelskapazitäten
Flow-Based Handelskapazitäten

Prozesskette FBMC

Marktsimulation Durchführung einer

NTC-

1. Lastflussberechnung

- 2. Bestimmung potenzieller **CNECs**
- 3. Bestimmung nodaler PTDFs
- 4. GSK-**Ermittlung**
- 5. Bestimmung zonaler PTDFs
- 6. CNEC-**Ermittlung**

7. PST- & HGÜ-Sensitivitäten

- regulären NTC-Marktsimulation
- Durchführung einer Lastflussberechnung
- Beobachtungsbereich: Leitungen und Transformatoren
- Ermittlung kritischer Ausfälle mittels Ausfallapproximation
- Berechnung der nodalen PTDFs (Sensitivität der Wirkleistungseinspeisung an einem Netzknoten auf den Wirkfluss über ein Netzelement)
- Ermittlung des GSKs je Marktgebiet und Netznutzungsfall (NNF)
- Vorgabe von Must-Run-Leistung und zu berücksichtigender Technologien je MG
- Bestimmung der zonalen PTDFs durch Multiplikation der GSKs mit den nodalen PTDFs

(Matrixmultiplikation)

- Bestimmung der marktsensitiven CNECs je NNF
- Ermittlung der Sensitivitäten der PSTs und der HGÜ-Konverterstationen

8. PST- & HGÜ-**Optimierung**

- Simultane Optimierung von marktgebietsinternen HGÜs und PSTs
- Ziel: Vergleichmäßigung bzw. Reduzierung der Lastflüsse auf CNECs

9. Bereinigung der Lastflüsse um Handel

Bestimmung von

kommerziellen

Bestimmung von

fluss ohne

der CCR)

Europa)

F_{0.CCR} (Wirkleistungs-

Austausch innerhalb

F_{0 all} (ohne kommer-

ziellen Austausch in

- Bestimmung der Remaining Available Margin (RAM) je CNEC und NNF.

10. RAM-

Berechnung

minRAM-Anpassung unter Berücksichtigung der Margin from Non-Coordinated Capacity Calculation (MNCC)

- 11. External **Constraints**
- Zur Berücksichtigung externer Beschränkungen, z.B. aufgrund von Stabilitätsproblemen, werden die Domains um zusätzliche Restriktionen erweitert
- 12. FB-Domainerstellung
- Erstellung einer FB-Domain je NNF Die FB-Domain
- enthält je CNEC die zonalen Sensitivitäten und die Remaining Available Margin (RAM)
- 13. LTA-**Inclusion & Presolve**
- LTA-Inclusion: Erweiterung der FB-Domains zur Berücksichtigung von Langfristkapazitäten
- Presolve: Entfernen nicht relevanter Restriktionen (CNECs)

- 14. Prüfung **FB-Domains**
- Plausibilisierung der FB-Domains anhand von Kenngrößen (bspw. max. bilaterale Handelsaustausche)
- FBMC-Marktsimulation
- Durchführung der FBMC-Marktsimulation
- Die FB-Domains stellen die den Handel beschränkenden Nebenbedingungen dar

AMR - adjustment for minimum RAM, CCR - capacity calculation region, CNEC - critical network element and contingency, Fo - flow per CNEC in the situation without commercial exchanges, Fo - maximum admissible power flow, FRM - flow reliability margin, GSK - generation shift key, LTA - long term allocation, MNCC - margin from non-coordinated capacity calculation, PTDF - power transfer distribution factor, R - minimum RAM factor, RAM - remaining available margin

5. Eingangsparameter & Methodik – Flow-Based Market Coupling

Prozesskette

Parametrierung und Arbeitshypothesen

FB-Region und CNECs

Generation-Shift-Keys (GSK)

PSTs und HGÜs

Langfristhandelskapazitäten

Flow-Based Handelskapazitäten

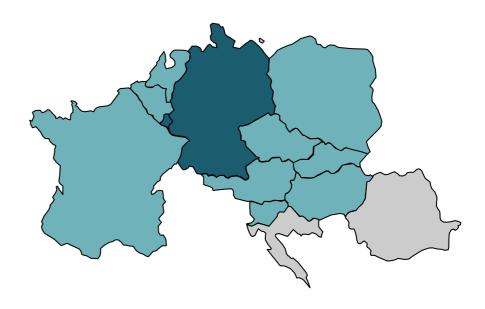
Parametrierung und Arbeitshypothesen t+1

	Parameter	Beschreibung	Bemerkungen
1.1	FB-Region (CCR)	CWE: AT, BE, DE, FR, NL	DE/LU einheitliches Marktgebiet (NTC DE/LU = ∞)
1.2	non-CCR- Marktgebiete	EU Mitgliedsstaaten: BG, CZ, ES, GR, HR, HU, LT, PL, PT, RO, SE, SI, SK Drittstaaten: AL, BA, CH, GB, ME, MK, NO, RS	Berücksichtigung bei Bestimmung der MNCC.
1.3	CNECs	CNEs: Grenzkuppelleitungen + interne Netzelemente (≥ 220 kV) Contingencies: Grenzkuppelleitungen + interne Netzelemente (≥ 220 kV)	
1.4	minRAM-Faktoren	DE: $R_{all} = 20,0\%, R_{CCR} = 20 \%$ Alle anderen CCR-Marktgebiete: $R_{all} = 70,0\%, R_{CCR} = 20 \%$	 Nur für DE wird ein Aktionsplan berücksichtigt. Derogations werden nicht abgebildet. Für die deutschen kritischen Netzelemente innerhalb der CCR wird ein identischer Startwert von 10% angesetzt. Der minRAM-Faktor (R_{all}) für DE zum 01.01.2021 ergibt sich aus einer linearen Interpolation zwischen 10% (= Startwert zum 01.01.2020) und 70% (31.12.2025).
1.5	minRAM-Anpassung (AMR)	I) $RAM_{0,CCR} + MNCC + AMR \ge minRAM_{all}$ II) $RAM_{0,CCR} + AMR \ge minRAM_{CCR}$ mit: $minRAM_{all} = R_{all} \times F_{max}$; $minRAM_{CCR} = R_{CCR} \times F_{max}$; $RAM_{0,CCR} = F_{max} - F_{0,CCR} - FRM$	
1.6	MNCC	DE: Berücksichtigung der für den Handel außerhalb der CCR zur Verfügung gestellten Kapazitäten (NTC-Werte) Alle anderen CCR-Marktgebiete: Berücksichtigung des erwarteten Handels außerhalb der CCR (Fuaf)	
1.7	FRM	Pauschal 10% von F _{max}	
1.8	GSK-Strategie	Vereinfachte Abbildung der CWE-Methodik (Stand 2019)	
1.9	PSTs	Bei grenznahen PSTs: Freigabe von ca. 30% des Stufungsbereichs für den Markt	Analog zur CWE-Methodik (Stand 2019)
1.10	HGÜs	Grenzüberschreitende HGÜs innerhalb der CCR (ALEGrO): Freigabe von 70% der Übertragungskapazität für den Markt (Abbildung mittels "Evolved Flow-Based")	Auf expliziten Wunsch der BNetzA wird ALEGrO mit reduzierter Kapazität abgebildet.
1.11	External Constraints	Vereinfachte Abbildung der CWE-Methodik (Stand 2019)	
1.12	LTAs	Verwendung der realen Werte aus 2019	

Parametrierung und Arbeitshypothesen t+5

	Parameter	Beschreibung	Bemerkungen
1.1	FB-Region (CCR)	Core (reduziert): AT, BE, CZ, DE, FR, HU, NL, PL, SI, SK	- LU, HR, RO: Abbildung über NTCs - DE/LU einheitliches Marktgebiet (NTC DE/LU = ∞)
1.2	non-CCR- Marktgebiete	EU Mitgliedsstaaten: BG, ES, GR, HR, LT, PT, RO, SE Drittstaaten: AL, BA, CH, GB, ME, MK, NO, RS	Berücksichtigung bei Bestimmung der MNCC.
1.3	CNECs	CNEs: Grenzkuppelleitungen + interne Netzelemente (≥ 220 kV) ← CWE-Region + interne Netzelemente (≥ 380 kV) ← östliche Marktgebiete Contingencies: Grenzkuppelleitungen + interne Netzelemente (≥ 220 kV)	Für die östlichen Marktgebiete (CZ, HU, PL, SI, SK) wird vereinfacht nur die 380 kV-Spannungsebene berücksichtigt.
1.4	minRAM-Faktoren	DE, PL: $R_{all} = 60,0\%, R_{CCR} = 20 \%$ Alle anderen CCR-Marktgebiete: $R_{all} = 70,0\%, R_{CCR} = 20 \%$	 Die Aktionspläne von DE und PL werden berücksichtigt. Für die deutschen und die polnischen kritischen Netzelemente wird jeweils ein identischer minRAM-Faktor angesetzt. Der minRAM-Faktor (R_{all}) für DE zum 01.01.2025 ergibt sich aus einer linearen Interpolation zwischen 10% (= Startwert zum 01.01.2020) und 70% (31.12.2025). Der minRAM-Faktor für PL wurde durch Mittelung der im Aktionsplan für 2025 ausgewiesenen CNEC-spezifischen Werte bestimmt.
1.5	minRAM-Anpassung (AMR)	I) $RAM_{0,CCR} + MNCC + AMR \ge minRAM_{all}$ II) $RAM_{0,CCR} + AMR \ge minRAM_{CCR}$ mit: $minRAM_{all} = R_{all} \times F_{max}$; $minRAM_{CCR} = R_{CCR} \times F_{max}$; $RAM_{0,CCR} = F_{max} - F_{0,CCR} - FRM$	
1.6	MNCC	Berücksichtigung des erwarteten Handels außerhalb der CCR (Fuaf)	
1.7	FRM	Pauschal 10% von F _{max}	
1.8	GSK-Strategie	Vereinfachte Abbildung der Core-Methodik (Stand 2019)	
1.9	PSTs	Bei grenznahen PSTs: Freigabe von ca. 30% des Stufungsbereichs für den Markt	Analog zur Core-Methodik (Stand 2019)
1.10	HGÜs	 Marktgebietsinterne HGÜs innerhalb der CCR (Ultranet): Freigabe von 30% der Übertragungskapazität für den Markt Marktgebietsübergreifende HGÜs innerhalb der CCR (ALEGrO): Freigabe von 70% der Kapazität für den Markt (Abbildung mittels "Evolved Flow-Based") 	Auf expliziten Wunsch der BNetzA wird ALEGrO mit reduzierter Kapazität abgebildet.
1.11	External Constraints	Keine	Annahme: External Constraints entfallen bis 2024/25.
1.12	LTAs	Erhöhung gegenüber heutigen Werten proportional zur Änderung der NTCs	NTCs gemäß MAF – ohne minRAM-Anpassung

5. Eingangsparameter & Methodik – Flow-Based Market Coupling Prozesskette Parametrierung und Arbeitshypothesen FB-Region und CNECs Generation-Shift-Keys (GSK) PSTs und HGÜs Langfristhandelskapazitäten Flow-Based Handelskapazitäten



FB-Region (CCR)

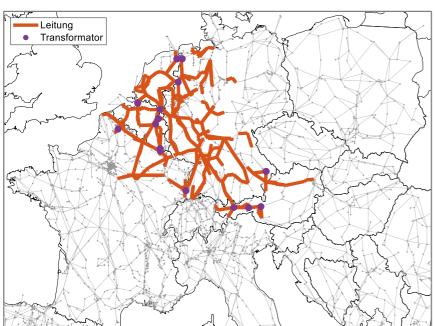
BA2020 t+1

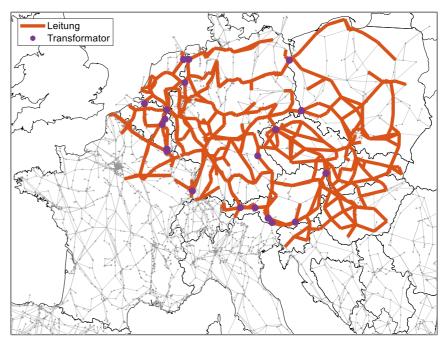
BA2020 t+5

In der BA2020 werden folgende Regionen mittels lastflussbasierter Marktkopplung (FBMC) abgebildet:

- t+1: CWE-Region bestehend aus den Marktgebieten DE/LU, BE, FR, NL und AT.
- t+5: Core-Region (reduziert) bestehend aus den Marktgebieten DE/LU, BE, FR, NL, AT, CZ, HU, PL, SI und SK.

 Die Abbildung der elektrisch weiter entfernten Marktgebiete HR und RO erfolgt mittels NTC.





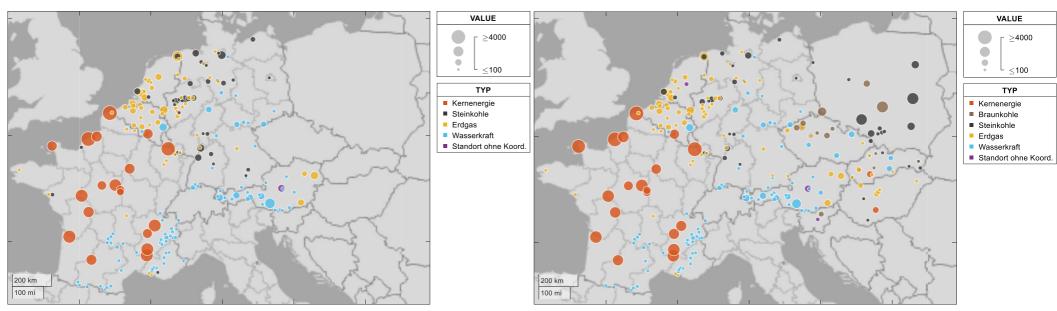
CNECs

BA2020 t+1

BA2020 t+5

- Dargestellt sind die berücksichtigten, marktsensitiven kritischen Netzelemente (CNEs).
- Als kritische Ausfälle (Contingencies Cs) werden Grenzkuppelleitungen und interne Netzelemente berücksichtigt.
- Für die Erstellung der FB-Domain werden jeweils nur die CNECs (Kombinationen aus kritischen Netzelementen und kritischen Ausfällen) berücksichtigt, die eine minimale Marktsensitivität (Zone-to-Zone-PTDF) aufweisen. Die in der Ausfallsituation zu erfüllende Mindestsensitivität beträgt in t+1 (CWE) für Grenzkuppelleitungen sowie interne Netzelemente 5% und in t+5 (Core) für Grenzkuppelleitungen 0% und für interne Netzelemente 5%.

5. Eingangsparameter & Methodik – Flow-Based Market Coupling Prozesskette Parametrierung und Arbeitshypothesen FB-Region und CNECs Generation-Shift-Keys (GSK) PSTs und HGÜs Langfristhandelskapazitäten Flow-Based Handelskapazitäten



Generation-Shift-Keys (GSK)

BA2020 t+1¹

BA2020 t+51

In der BA2020 erfolgt eine vereinfachte Nachbildung der CWE- und Core-GSKs:

- Je Marktgebiet und Netznutzungsfall werden die im GSK zu berücksichtigenden Technologien sowie ein technologiespezifischer Gewichtungsfaktor vorgegeben.
- Nichtverfügbarkeiten und Must-Run-Vorgaben (z.B. aufgrund von KWK-Restriktionen) werden kraftwerksscharf bzw. blockscharf berücksichtigt.
- GSK-Strategie
 - FR: Berechnung individueller GSK-Faktoren je Erzeugungseinheit basierend auf einem "pro rata"-Ansatz je nach Einsatz im Referenzlastflussfall (Pakt).
 - Alle andere Marktgebiete: Berechnung der GSK-Faktoren je Erzeugungseinheit anteilig auf Basis von Höchst- und Mindestleistung (Pmax-Pmin).

¹Dargestellt ist die über das Jahr gemittelte Kraftwerksleistung, die bei der GSK-Bestimmung berücksichtigt wird (P_{akt} bzw. P_{max}-P_{min}).

5. Eingangsparameter & Methodik – Flow-Based Market Coupling

Prozesskette

Parametrierung und Arbeitshypothesen

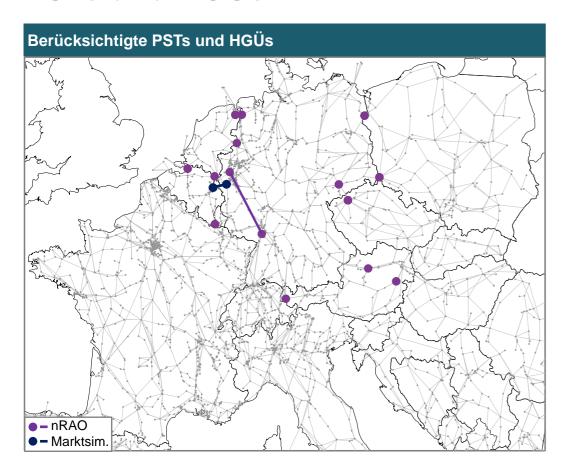
FB-Region und CNECs

Generation-Shift-Keys (GSK)

PSTs und HGÜs

Langfristhandelskapazitäten

Flow-Based Handelskapazitäten



PSTs und HGÜs

Standort	Anzahl	Marktgebiet		ereich ozw. [MW]	Berücksichtigung	
			min.	max.	t+1	t+5
PSTs						
Ernsthofen	1	AT	-6	6	x	x
Tauern	1	AT	-6	6	x	
Ternitz	2	AT	-6	6	х	х
Aubange	2	BE	-6	6	x	х
Vaneyck	2	BE	-6	0	x	х
Zandvliet	2	BE	-6	0	х	х
Hradec	4	CZ	-10	10		х
Bürs	1	DE	-10	10	x	х
Diele	2	DE	-10	10	x	х
Gronau	1	DE	-10	10	x	х
Oberzier	2	DE	-10	10		x
Vierraden	4	DE	-10	10		х
Röhrsdorf	2	DE	-10	10		х
Meeden	3	NL	-5	5	x	х
Mikulowa	4	PL	-8	8		х
HGÜs						
Osterath - Philippsburg	1	DE	-600	600		х
Oberzier - Lixhe	1	DE / BE	-700	700	x	x

- Der Einsatz von grenznahen PSTs und marktgebietsinternen HGÜs innerhalb der CCR wird im Rahmen der FB-Domainerstellung mit dem Ziel der Handelskapazitätserhöhung optimiert (non-costly Remedial Action Optimization – **nRAO**).
- Die Abbildung des Einsatzes marktgebietsübergreifender HGÜs innerhalb der CCR erfolgt in der FBMC-Marktsimulation mittels der Evolved Flow-Based Methodik. Auf expliziten Wunsch der BNetzA erfolgt eine Begrenzung des maximalen Einsatzes dieser HGÜs auf 70%.

5. Eingangsparameter & Methodik – Flow-Based Market Coupling

Prozesskette

Parametrierung und Arbeitshypothesen

FB-Region und CNECs

Generation-Shift-Keys (GSK)

PSTs und HGÜs

Langfristhandelskapazitäten

Flow-Based Handelskapazitäten

Langfristhandelskapazitäten

BA2020 t+1 (CWE)

Die langfristigen Handelskapazitäten (LTAs) wurden basierend auf den Werten von 2019 ermittelt. Um die Auswirkung von vergangenen Ausschaltungen soweit möglich zu korrigieren, wird der maximale Wert je meteorologischer Jahreszeit (Dez-Feb, Mär-Mai, Jun-Aug, Sep-Nov) verwendet.

Beispiel:

 $LTA_{Winter\ 2020} = max(LTA_{01.2019}; LTA_{02.2019}; LTA_{12.2019})$

mit LTA_{MM.2019} = Jahreswert₂₀₁₉ + Monatswert aus MM.2019

BA2020 t+5 (Core ex HR, RO)

Für alle Marktgebietsgrenzen außer DE/BE wird eine Erhöhung der LTAs proportional zur Erhöhung der NTCs (gemäß MAF; ohne minRAM-Anpassung) angenommen.

Beispiel:

 $LTA_{Winter\ 2024} = \\ LTA_{Winter\ 2020} \times NTC_{ohne\ minRAM\ 2024} / NTC_{ohne\ minRAM\ 2020}$

5. Eingangsparameter & Methodik – Flow-Based Market Coupling

Prozesskette

Parametrierung und Arbeitshypothesen

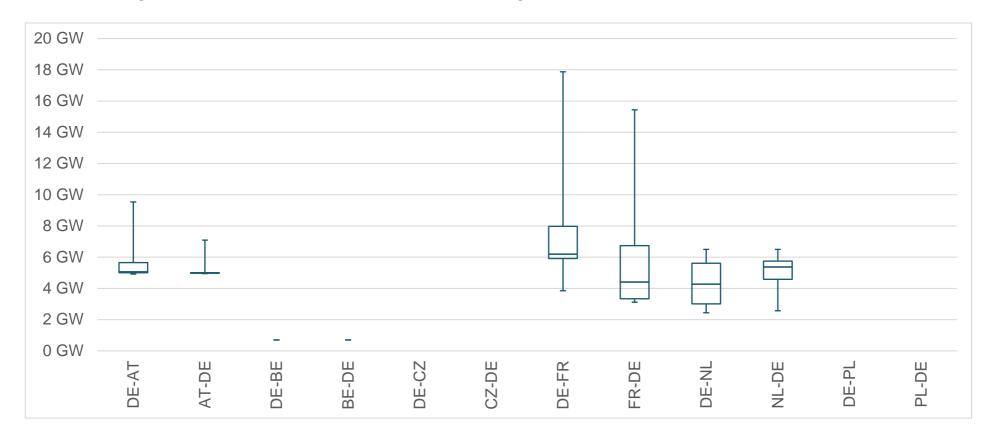
FB-Region und CNECs

Generation-Shift-Keys (GSK)

PSTs und HGÜs

Langfristhandelskapazitäten

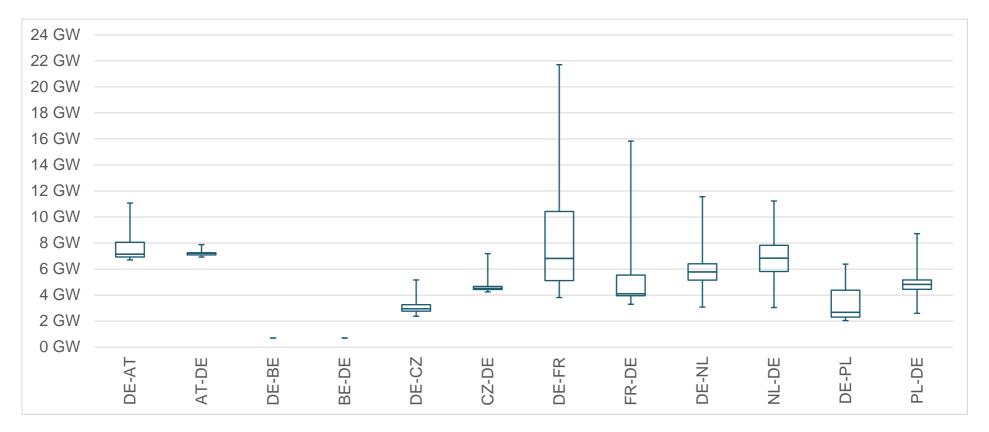
Flow-Based Handelskapazitäten



Flow-Based Handelskapazitäten

Charakterisierung der FB-Domains – Max. Bilateral Exchanges im Jahreslauf t+1

- Die maximalen bilateralen Austausche (maxBEX) beschreiben den maximal möglichen Austausch zwischen zwei Marktgebieten unter der Annahme, dass die innerhalb der Kapazitätsberechnungsregion (CCR) erfolgenden Austausche aller anderen Marktgebiete Null sind.
- Im Boxplot begrenzt die untere Linie der Box das 25%-Quantil und die obere Linie das 75%-Quantil. Dies bedeutet, dass 50% der häufigsten Werte durch die Box umfasst werden. Die Linie innerhalb der Box ist der Median, die Enden der Antennen (Whisker) bezeichnen jeweils die Minima bzw. Maxima der Datenmenge.



Flow-Based Handelskapazitäten

Charakterisierung der FB-Domains – Max. Bilateral Exchanges im Jahreslauf t+5

- Die maximalen bilateralen Austausche (maxBEX) beschreiben den maximal möglichen Austausch zwischen zwei Marktgebieten unter der Annahme, dass die innerhalb der Kapazitätsberechnungsregion (CCR) erfolgenden Austausche aller anderen Marktgebiete Null sind.
- Im Boxplot begrenzt die untere Linie der Box das 25%-Quantil und die obere Linie das 75%-Quantil. Dies bedeutet, dass 50% der häufigsten Werte durch die Box umfasst werden. Die Linie innerhalb der Box ist der Median, die Enden der Antennen (Whisker) bezeichnen jeweils die Minima bzw. Maxima der Datenmenge.

6. Eingangsparameter & Methodik – Netzanalysen

Redispatch-Methodik

Netzausbaumaßnahmen

Freischaltplanung

Berücksichtigung NABEG 2.0

RD-Potenzial KW < 50 MW

- Bisher wurden KW ab einer inst. Leistung von 50 MW zum Redispatch herangezogen.
- Nach §13a EnWG (NABEG 2.0) sollen Anlagen ab 100 kW zur Teilnahme am Redispatch verpflichtet werden (ab Okt. 2021).
- Das in der BA20 t+5 zusätzlich berücksichtigte positive RD-Potenzial von konv. Anlagen zwischen 10 MW und 50 MW beträgt:

	Steinkohle [MW]	Erdgas [MW]	Mineralölprodukte] [MW]	Abfall [MW]	Pumpspeicher [MW]	Speicherwasser [MW]
Nord	0,0	223,0	0,0	87,4	70	0
Süd	0,0	144,0	69,9	0,0	858,5	336,5
Gesamt	0,0	367,0	69,9	87,4	928,5	336,5

Zusätzlich werden in der BA20 PV-Anlagen > 100 kW anteilig je ÜNB wie folgt für Redispatch berücksichtigt:

■ 50 Hertz: 80%

Amprion & Tennet: 35%

■ TNG: 30%

Biomasse und sonstige Erneuerbare werden als nicht RD-fähig eingestuft.

Berücksichtigung Kapazitätsreserve (KapRes) in BA20

- Kapazitätsreserve kann für den Redispatch eingesetzt werden
- Sie muss nicht nachrangig zur Netzreserve eingesetzt werden, hat jedoch Auflagen bzgl. Betriebsstunden (z.B. wg. BlmSchG, etc...)
- Modellierung für den t+1 Zeithorizont
 - Freigabe von KapRes in der Grenzsituation
 - Keine Freigabe in Jahreslauf
- Modellierung für den t+5 Zeithorizont
 - Keine Freigabe in t+5, weder für Jahreslauf, noch für Grenzsituation weil:
 - Erste Bezuschlagung der KapRes nur für 2 Jahre
 - Anschließend weitere Ausschreibung für die nächsten 2 Jahre
 - Große Unsicherheiten bezüglich t+5 (Gesetzeslage, neue Ausschreibungsanforderung, etc.)

Bezuschlagte Anlagen für die Kapazitätsreserve ab Okt. 2020	Leistung [MW]
Statkraft 02 Landesbergen	56
LEAG Ahrensfelde AB	60
LEAG Ahrensfelde CD	60
LEAG Thyrow AB	60
LEAG Thyrow CDE	90
RWE Gersteinwerk Block F	340
RWE Gersteinwerk Block G	340
Statkraft Emden	50
Summe	1056

Methodische Vorüberlegungen zur Ermittlung der Netzreserve in der **BA 2020 – Ranking potenzieller Netzreservekraftwerke (I)**

- Für die Ermittlung des robusten Netzreserve-Portfolios wird neben der netztechnischen Wirksamkeit der potenziellen Netzreservekraftwerke auch die technische Eignung dieser potenziellen Kraftwerke herangezogen.
- Legitimationsgrundlage hierfür ist §3 Abs.2 NetzResV: "Grundlage der Prüfung ist eine von den Betreibern von Übertragungsnetzen jährlich gemeinsam erstellte Analyse der verfügbaren gesicherten Erzeugungskapazitäten auch im Hinblick auf deren technische Eignung für die Abwehr von Gefahren für die Sicherheit oder Zuverlässigkeit des Elektrizitätsversorgungssystems einschließlich ihrer Anfahrzeiten und ihrer Laständerungsgeschwindigkeiten, ..."
- Zur Beurteilung der technischen Eignung werden Kriterien herangezogen, mit denen ein effizienter Einsatz der Netzreserve beurteilt werden kann. Diese betreffen:
 - Zugriffsmöglichkeiten der ÜNB auf die Kraftwerke
 - Flexibilität und Restriktionen des Kraftwerkseinsatzes
- Die Modellierung der technischen Eignung erfolgt über individuelle Strafkostenterme in der Zielfunktion der Redispatch-Optimierung. Technisch weniger geeignete Kraftwerke werden mit höheren Strafkosten belegt, damit diese vom Optimierungsalgorithmus nachrangig zum Engpassmanagement herangezogen werden.

Methodische Vorüberlegungen zur Ermittlung der Netzreserve in der BA 2020 – Ranking potenzieller Netzreservekraftwerke (II)

Zugriffsmöglichkeiten der ÜNB

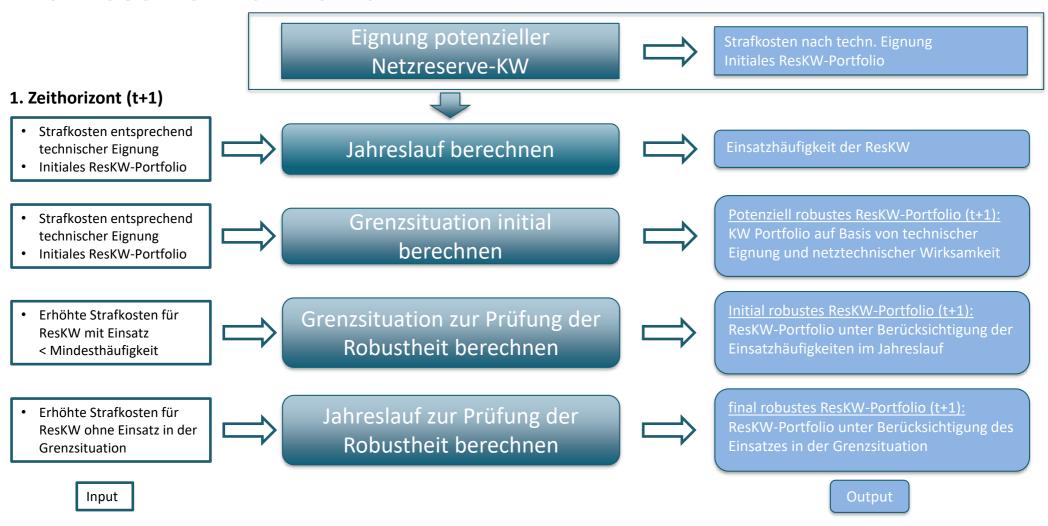
- Als Äquivalent für die Zugriffsmöglichkeiten wird die Anschlussspannungsebene bewertet. Ein direkter Anschluss an das Übertragungsnetz (Höchstspannungsebene) bietet folgende Vorteile:
 - Direkte Kommunikationswege der ÜNB ohne Einbindung unterlagerter Verteilnetzbetreiber
 - Kein Risiko von Einsatzeinschränkungen aufgrund von Engpässen in unterlagerten Netzen
- Mit abnehmender Spannungsebene werden diese Effekte zunehmend aufgezehrt

Flexibilität und Restriktionen des Kraftwerkseinsatzes

- Repräsentativ für die Flexibilität des Kraftwerkseinsatz sind die benötigen Zeiten für den Wechsel von Betriebszuständen und das Anfahren bestimmter Betriebspunkte:
 - Anfahrzeiten aus dem Stillstand auf Mindest- und Nennleistung
 - Abfahrzeiten von Nennleistung auf Mindestleistung und Netztrennung
 - Verhältnis von Mindestleistung zu Nennleistung als Indikator für die Breite des Betriebsbereichs
 - Mindestbetriebs- und –stillstandszeiten
 - Sonstige Einschränkungen des Kraftwerkseinsatzes (Genehmigungsauflagen, Umweltrestrikitionen, etc.)

Methodische Vorüberlegungen zur Ermittlung der Netzreserve in der BA 2020 – Ranking potenzieller Reservekraftwerke (III)

	Strafkosten [€/MWh]
Marktkraftwerke in DE	500
Einsenkung der Pumpleistung in DE	500
RD Potenzial in AT	500
Netzreservekraftwerke in DE entsprechend der technischen Eignung	1.005 – 1.530
Aufschlag für Netzreservekraftwerke, die im JL < Mindesteinsatzhäufigkeit eingesetzt werden	+ 1.500
Ausländisches Redispatch-Potenzial	10.000
Einsenkung Windeinspeisung & PV (PV nur in t+5)	2.500
KapRes in DE	1.500



Methode zur Ermittlung eines robusten Portfolios inländischer Netzreserve-Kraftwerke

2. Zeithorizont (t+5)

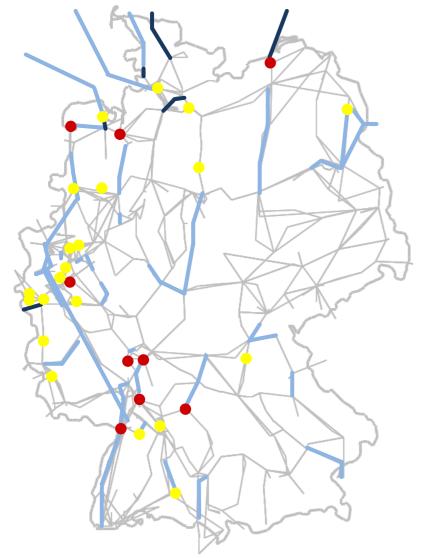
Entspricht dem Vorgehen in (t+1), wobei ResKW, die nicht zum robusten Portfolio für (t+1) gehören, bereits im initialen Jahreslauf mit höheren Strafkosten belegt werden

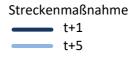
6. Eingangsparameter & Methodik – Netzanalysen

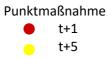
Redispatch-Methodik

Netzausbaumaßnahmen

Freischaltplanung







Geographische Darstellung der Netzausbaumaßnahmen

Netzausbaumaßnahmen für t+1 und t+5

Netzausbaumaßnahmen BBPIG-Projekte

Netzausbaumaßnahmen für t+1 und t+5 (I)

					BBPIG/EnLAG-Monitoring							
Projektnummer	Maßnahmenname	Maßnahmen-Nr.	Grenzübersch reitende Maßnahme	Maßnahmenart	BBP-Nr.	Q3/2016	Q4/2017	Q3/2018	Q2/2019*	Für BA20 berücksichtigtes IBN-Jahr	t+1 (31.12.2020)	t+5 (31.12.2024)
DC2	Osterath - Philippsburg (Ultranet)	DC2		Leitung	2		2021		2024	2024		х
P21	Conneforde - Merzen	M51b		Anlage	6					2024		х
P25	Süderdonn (früher Barlt) - Heide/West	M42		Leitung	8	2018		2019	2019	2019	х	х
P25	Heide/West - Husum/Nord	M43		Leitung	8	2018		2021	2021	2021		х
P25	Husum/Nord – Klixbüll (früher Niebüll/Ost)	M44		Leitung	8	2019		2022	2022	2022		х
P25	Klixbüll (früher Niebüll/Ost) - Bundesgrenze DK	M45	х	Leitung	8	2021		2021	2023	2023		х
P34	Stendal/West - Wolmirstedt	M22a		Leitung	39			2021				х
P34	Perleberg - Stendal/West	M22a		Leitung	39	2020		2021				х
P34	Parchim/Süd - Perleberg	M22b		Leitung	39	2021		2022				х
P34	Güstrow - Parchim/Süd	M22c		Leitung	39	2021		2022				х
P41	Punkt Metternich - Niederstedem	M57		Leitung	15				2024	2024		х
P46	Mechlenreuth - Redwitz	M56		Leitung	18	N/A	N/A	N/A	2024	2024		х
P46	Mechlenreuth – Etzenricht	M56		Leitung	18	N/A	N/A	N/A	2025	2025		
P46	Schwandorf - Etzenricht	M56		Leitung	18	N/A	N/A	N/A	2024	2024		х
P47	Urberach	M60		Anlage	19					2020	х	х
P47	Urberach - Pfungstadt - Weinheim	M60		Leitung	19				2024	2024		х
P48	Grafenrheinfeld - Kupferzell	M38a		Leitung	20	2022	2022	2022	2024	2024		х
P52	Punkt Rommelsbach - Herbertingen	M93		Leitung	24	2020	2020	2020	2021	2021		х
P52	Punkt Wullenstetten - Punkt Niederwangen	M95		Leitung	25	2020	2020	2020	2023	2023		x
P64	Konverter CGS	M107Konv1	х	Anlage	29	2018		2019			х	х
P64	Combined Grid Solution (CGS)	M107offshore	х	Leitung	29			2019			х	x
P65	Oberzier - Bundesgrenze (BE)	M98	х	Leitung	30	2020	2020	2020	2020	2020	х	х
P66	Wilhelmshaven (Fedderwarden) - Conneforde	M101		Leitung	31	2020		2020	2020	2020	х	x
P67	Simbach - Matzenhof - Bundesgrenze AT	M102	х	Leitung	32	2021		2020	2023	2023		х
P67	Altheim - Bundesgrenze Österreich	M103		Leitung	32	2021		2022	2023	2023		х
P67	Altheim - Adlkofen	M103a		Leitung	32	2021		2022	2023	2023		х
P67	Adlkofen - Matzenhof (Abzweig Simbach)	M103b		Leitung	32	2021		2022	2023	2023		х
P68	Deutschland - Norwegen (NordLink): onshore	M108	х	Leitung	33	2019		2020	2021	2021		х
P69	Emden/Ost - Conneforde	M105		Leitung	34	2021		2021	2023	2023		х
P70	Birkenfeld - Mast 115A	M106		Leitung	35		2019	2020	2021	2021		х
P72	Göhl - Lübeck	M351		Leitung	42	2022		2022	2027	2027		
P72	Lübeck - Siems	M49		Leitung	42	2022		2022	2026	2026		
P72	Kreis Segeberg - Lübeck	M50		Leitung	42	2021		2022	2025	2025		
P118	Borken - Mecklar	M207		Leitung	43	2022		2022	2023	2023		х
P151	Borken - Twistetal	M353		Leitung	45	2024		2022	2023	2023		х
P185	Redwitz - Landesgrenze Bayern/Thüringen (Punkt Tschirn)	M420		Leitung	46	2022		2020	2021	2021		x

*BMWi-Monitoring Q2/2019

Netzausbaumaßnahmen EnLAG-Projekte

Netzausbaumaßnahmen für t+1 und t+5 (II)

					BBPIG/	EnLAG-Mo	nitoring					
Projektnummer	Maßnahmenname	Maßnahmen-Nr.	Grenzübersch reitende Maßnahme	Maßnahmenart	BBP-Nr.	Q3/2016	Q4/2017	Q3/2018	Q2/2019*	Für BA20 berücksichtigtes IBN-Jahr	t+1 (31.12.2020)	t+5 (31.12.2024)
50HzT-003	Neuenhagen - Vierraden - Bertikow	M50HzT-003a	х	Leitung	3	2020	2020	2022				x
50HzT-003	Bertikow	M50HzT-003TR2		Anlage	3			2022				х
50HzT-007	Neuenhagen - Henningsdorf - Wustermark	M50HzT-007a		Leitung	11	2021	2021	2021				x
AMP-001	Wehrendorf - St. Hülfe	M001		Leitung	2	2019	2019	2019	2023	2023		х
AMP-009	Niederrhein - Meppen	M009		Leitung	5	2021	2021	2021	2023	2023		x
AMP-010	Hesseln - Gütersloh	M010j		Leitung	16	2019	2021	2021	2021	2021		х
AMP-014	Niederrhein - Osterath	M014		Leitung	14	2019	2019	2020	2024	2024		х
AMP-014	Osterath - Rommerskirchen	M014		Leitung	15	2019	2019	2020	2021	2021		х
AMP-018	Rommerskirchen - Sechtem	M018		Leitung	15	2018	2019	2020	2022	2022		х
AMP-022	Kruckel - Garenfeld	M022		Leitung	19	2018	2019	2020	2021	2021		х
AMP-022	Landesgrenze NW/RP - Eiserfeld	M022		Leitung	19				2022	2022		x
AMP-022	Landesgrenze NW/RP - Dauersberg	M022		Leitung	19				2022	2022		x
AMP-022	Punkt Attendorn - Landesgrenze NW/RP	M022		Leitung	19					2024		x
TTG-006	Wahle - Mecklar	M-TTG-006a		Leitung	6	2021		2021	2024	2024		x
TTG-007	Dörpen/West - Punkt Meppen	M-TTG-007a		Leitung	5	2021		2021	2020	2023 (AMP)		x
TTG-009	Ganderkesee - St. Hülfe	M-TTG-009a		Leitung	2	2021	2021	2021	2023	2023		х
TTG-005	Audorf - Flensburg - Kassø	M-TTG-005c	х	Leitung	1	2020		2020	2020	2020	х	х
TTG-005	Hamburg/Nord - Dollern	M-TTG-005a		Leitung	1	2018		2019	2019	2019	х	х

*BMWi-Monitoring Q2/2019

Netzausbaumaßnahmen Ad hoc-Projekte

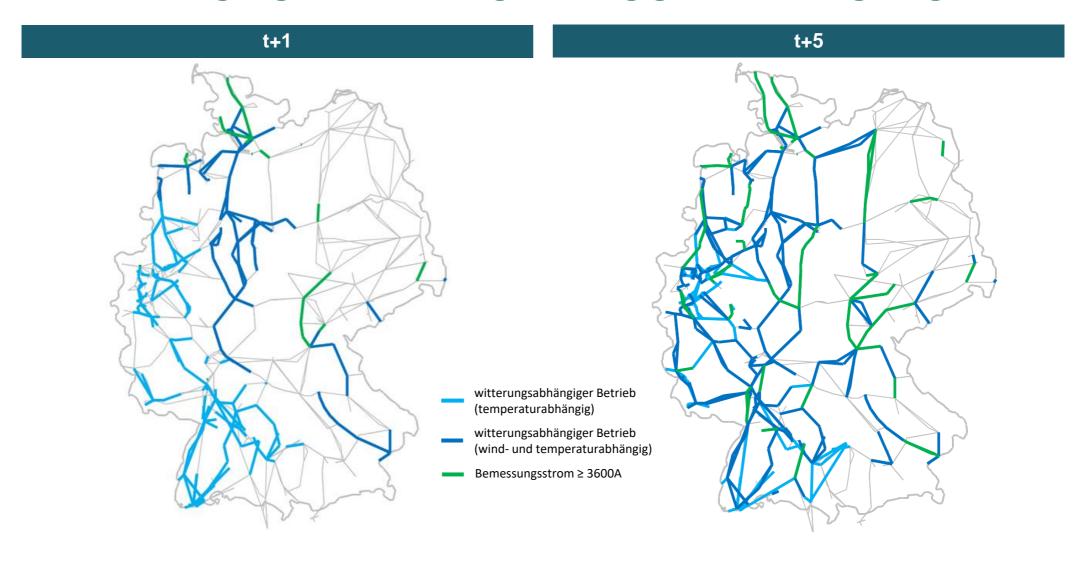
Netzausbaumaßnahmen für t+1 und t+5 (III)

Projektnummer	Maßnahmenname	Maßnahmen-Nr.	Grenzübersch reitende Maßnahme	Maßnahmenart	Für BA20 berücksichtigtes IBN-Jahr	t+1 (31.12.2020)	t+5 (31.12.2024)
P113	Stadorf TCSC	M519		Anlage	2022		x
P310	Bürstadt-Kühmoos	M485		Leitung	2023		х
P324	Witten-Hattingen	M512		Leitung	2022		x
P345	PST Hamburg Ost	M556		Anlage	2023		х
P346	Lastflusssteuernde Maßnahme in Hanekenfähr	M557		Anlage	2023		x
P347	Lastflusssteuernde Maßnahme in Oberzier	M558		Anlage	2023		х
P348	PST Wilster/West	M559		Anlage	2023		х
P349	PST Würgau	M560		Anlage	2023		х
P350	PST Pulverdingen	M561		Anlage	2023		х

Netzausbaumaßnahmen Sonstige Projekte

Netzausbaumaßnahmen für t+1 und t+5 (IV)

Projektnummer	Maßnahmenname	Maßnahmen-Nr.	Grenzübersch reitende Maßnahme	Maßnahmenart	Für BA20 berücksichtigtes IBN-Jahr	t+1 (31.12.2020)	t+5 (31.12.2024)
50HzT-003	2. Einschleifung Vierraden	M50HzT-003c	х	Leitung	2022		х
AMP-028	KW Herne	M028		Anlage/Leitung	2024		х
P47a	Kriftel - Farbwerke Höchst-Süd	M64		Leitung	2022		х
P109	Prüm	M224		Anlage	2022		х
P154	Siegburg	M356		Anlage	2022		х
P158	Mettmann	M360		Anlage	2022		х
P406	Aach – Bundesgrenze LU	M606		Anlage	2024		х
P407	Pöppinghausen	M636		Anlage	2024		х
P407	Bischofsheim	M639		Anlage	2020	х	х
P407	Herbertingen	M667		Anlage	2022		х
P460	Buescherhof	M687		Leitung	2022		х
P462	Siersdorf und Zukunft	M689		Anlage	2023		х
P463	St. Peter-Opladen	M690		Leitung	2021		х
P463	Opladen	M690		Anlage	2020	х	х
P26	Elbekreuzung	M79		Leitung	2019	х	х
P155	Schaltanlage Elsfleth/West	M357		Anlage	2019	х	х
P178	Gütersloh - Bechterdissen	M404		Anlage	2019	х	х
50HzT-neu	Lubmin - Anbindung Wikinger 2	50HzT- Wikinger2		Anlage	2024		х
P69	Emden/Ost	M105TR2		Anlage	2019	х	х
P177	Kupferzell	M389TR1		Anlage	2020	х	х
P179	Heidelberg-Nord	M407TR1		Anlage	2020	х	х
P207	Anlage Daxlanden	M418TR1		Anlage	2020	х	х
P328	Deutschland – Großbritannien (NeuConnect) Anschluss in Fedderwarden	M534	х	Leitung	2023		x



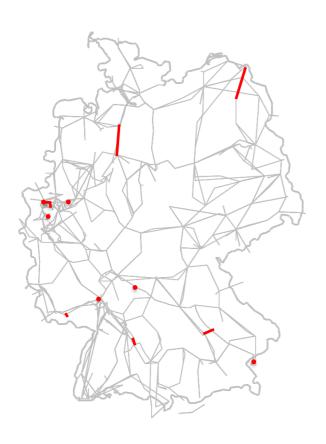
Berücksichtigung von witterungsabhängigen Stromtragfähigkeiten

6. Eingangsparameter & Methodik – Netzanalysen

Redispatch-Methodik

Netzausbaumaßnahmen

Freischaltplanung



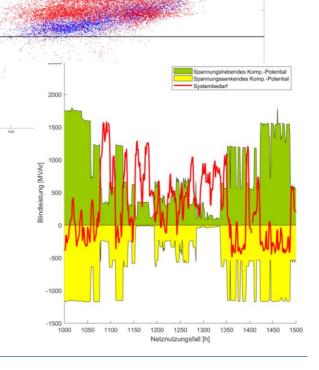
Freischaltplanung in der Grenzsituation

t+1

Nichtverfügbare Betriebsmittel	Netzelement	Spannungsebene
Lubmin - Altentreptow/Nord 475	Stromkreis	380 kV
Lippe Süd	Stromkreis	380 kV
Otterbach Süd (Stich Homburg)	Stromkreis	220 kV
T 421 Niederrhein	Transformator	380/220 kV
T 212 Elmenhorst	Transformator	220/110 kV
T 412 Bürstadt	Transformator	380/110 kV
T 21 Rheinhausen	Transformator	220/110 kV
Landesbergen - Sottrum 2	Stromkreis	380 kV
Ingolstadt - Sittling 228	Stromkreis	220 kV
NK 2 Trennfeld	Transformator	220/110 kV
Endersbach - Wendlingen blau	Stromkreis	380 kV
Altheim – Simbach - St. Peter 234/230 mit Vorbeiführung in St. Peter nach Hausruck 204A	Stromkreis	220 kV
T 32 Bassecourt (FR)	Transformator	380/220 kV
Horta - Avelgem 101 (BE)	Stromkreis	380 kV
Muhlbach - Sierentz 2 (FR)	Stromkreis	380 kV
Rzeszów - Skawina (PL)	Stromkreis	380 kV
Czarna - Pasikurowice (PL)	Stromkreis	380 kV

7. Eingangsparameter & Methodik – Stabilitätsanalysen

Überblick

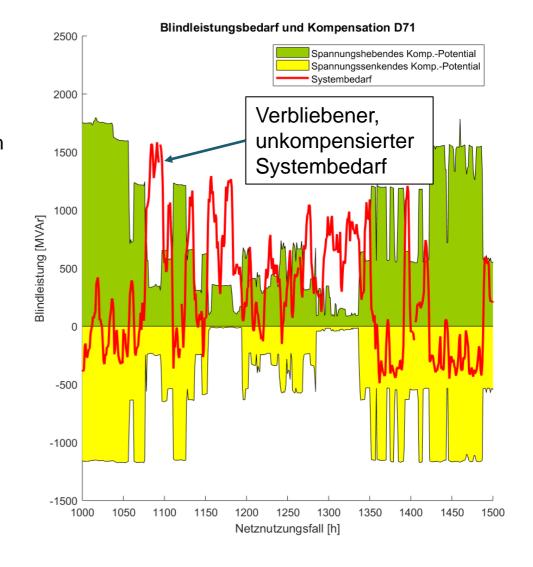

Methodik zur Ermittlung der Auswirkungen auf die Spannungshaltung durch die Bereitstellung von Blindleistung

Systemstabilitätsanalysen

Im Rahmen der Bedarfsanalyse werden die Auswirkungen auf die Spannungshaltung und Spannungsstabilität analysiert. Hierfür werden die bilanziellen Blindleistungsungleichgewichte aller Netzregionen in beiden Szenarien untersucht.

Die Untersuchungen umfassen:

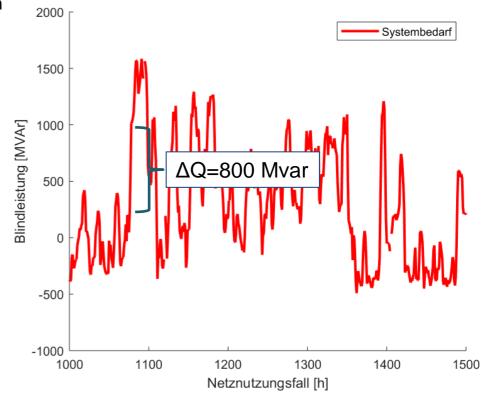
- Prognose der vertikalen Blindleistungsbedarfe (Q-Prognose)
- Ermittlung des stundenscharfen stationären und regelbaren Bedarfs sowie der möglichen Deckung durch verfügbare Kapazitäten
- Störungsanalyse: Zusätzliche Regelbarer Blindleistungsbedarf bei Leistungsausfällen und Exceptional Contingencies (ECs)



Ermittlung des stationärer Blindleistungsbedarfs zur Bewertung der Spannungshaltung

Systemstabilitätsanalysen

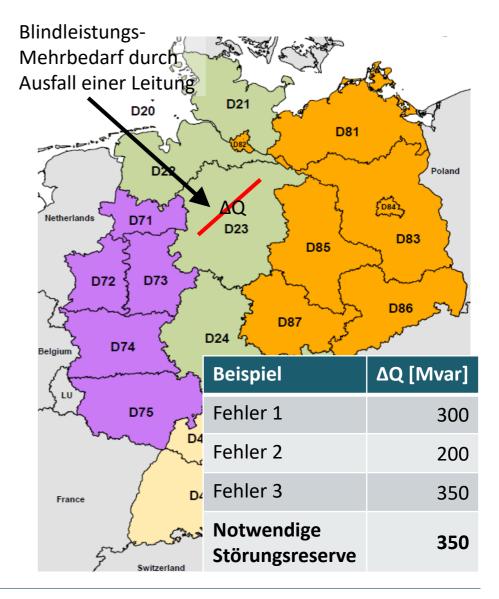
- Stationärer Blindleistungshaushalt = Bedarf -Kapazitäten
- Bestimmung der Bedarfe des 380/220-kV-Netzes im Netzregionenmodell für Jahresdurchlauf zzgl.
 vertikaler Blindleistungsflüsse zwischen ÜNB/VNB
- Annahmen zur Deckung der Systembedarfe:
 - Kompensationsanlagen und HGÜs vollständig verfügbar
 - Generatoren vollständig verfügbar, wenn sie in Betrieb sind und Wirkleistung einspeisen
- ➤ Ergebnis: Maximale, verbliebene, unkompensierte Systembedarfe ergeben den Mehrbedarf an stationären Blindleistungskapazitäten



Ermittlung des dynamischen Blindleistungsbedarfs durch Leistungsflusswechsel zur Bewertung der Spannungsstabilität

Systemstabilitätsanalysen

- Zur Wahrung der Spannungsstabilität müssen dynamisch regelbare Bedarfe bei Leistungsflussänderungen und Störungen jederzeit gedeckt werden können
- Leistungsflussänderungen werden wesentlich durch Änderungen zum Stundenwechsel bestimmt
- Ermittlung der jeweiligen steigenden und sinkenden Bedarfsänderungen für jede Netzregion bei Stundenwechsel und Analyse der Deckungsmöglichkeiten durch regelbare Kapazitäten (Kraftwerke, HGÜ, rot. Phasenschieber, STATCOM)
- Restlich verfügbaren regelbaren Kapazitäten werden primär für Störungsreserve, sekundär für stationäre Bedarfsdeckung eingesetzt



Ermittlung des dynamischen Blindleistungsbedarfs durch Störungen zur Bewertung der Spannungsstabilität

Systemstabilitätsanalysen

- Im Falle einer Störung treten sehr plötzlich veränderte Blindleistungsverluste auf, die unmittelbar kompensiert werden müssen
- Betrachtung von (n-1)-Ausfälle, HGÜ-Ausfälle und ECs
- Bestimmung der Änderung der stationären Blindleistungsbedarfe nach Störung
- Zuordnung der Verluste auf die Netzregionen
- Der jeweilige höchste Bedarf in einer Netzregion bestimmt die notwendige regelbare Blindleistungsreserve, die vorgehalten werden muss, um die schlimmste anzunehmende Störung zumindest stationär decken zu können
- Regelbare Blindleistungsreserve muss durch regelbare Kapazitäten (Kraftwerke, HGÜ, rot. Phasenschieber, STATCOM) bereitgestellt werden

24.04.20

Zusammenführung der Ergebnisse

Systemstabilitätsanalysen

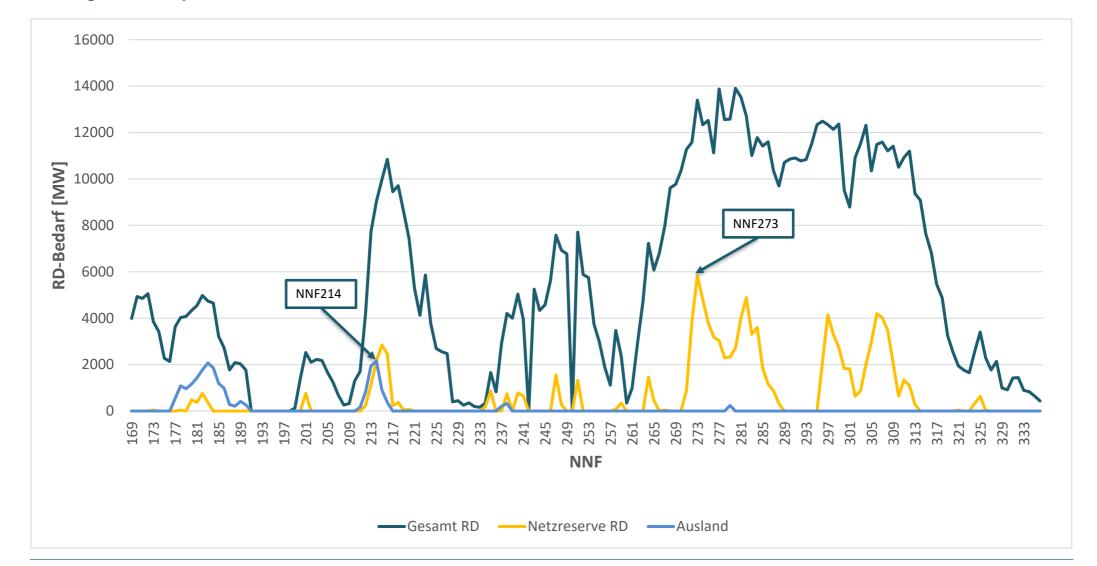
- Stationärer und regelbarer Systembedarf
 - a) für Leistungsflusswechsel
 - b) für Störungen
- Statische Potentiale k\u00f6nnen ausschlie\u00dflich f\u00fcr station\u00e4re Bedarfe eingesetzt werden
- Regelbare Anlagen können sowohl für regelbare Bedarfe als auch für stationäre Bedarfe eingesetzt werden
- Stundenscharfe Analyse, wie die regelbaren Bedarfe mit vorhandenen Anlagen gedeckt werden können
- Stundenscharfe Analyse, wie die stationären Bedarfe mit vorhandenen statischen Anlagen und regelbaren Potential-Reserven gedeckt werden können
- > Bewertung der Bilanziellen Unterdeckung

- 1. Aufgabenstellung und Zielsetzung
- 2. Berücksichtigung neuer politischer Rahmenbedingungen
- 3. Vorgehensweise / Methodik der Systemanalysen
- **4.** Eingangsparameter & Methodik Marktsimulation
- 5. Eingangsparameter & Methodik Flow-Based Market Coupling
- **6.** Eingangsparameter & Methodik Netzanalysen
- 7. Eingangsparameter & Methodik Stabilitätsanalysen
- 8. Identifikation der Grenzsituation

Grenzsituation t+1

Grenzsituation t+5

- 9. Marktsimulation
- 10. Netzanalysen
- 11. Bilanzielle Spannungs- und Blindleistungsanalysen
- 12. Fazit



Identifikation der Grenzsituation in t+1

RD-Ergebnisse synthetische Woche

Identifikation der Grenzsituation in t+1

Auswertung Synthetische Woche

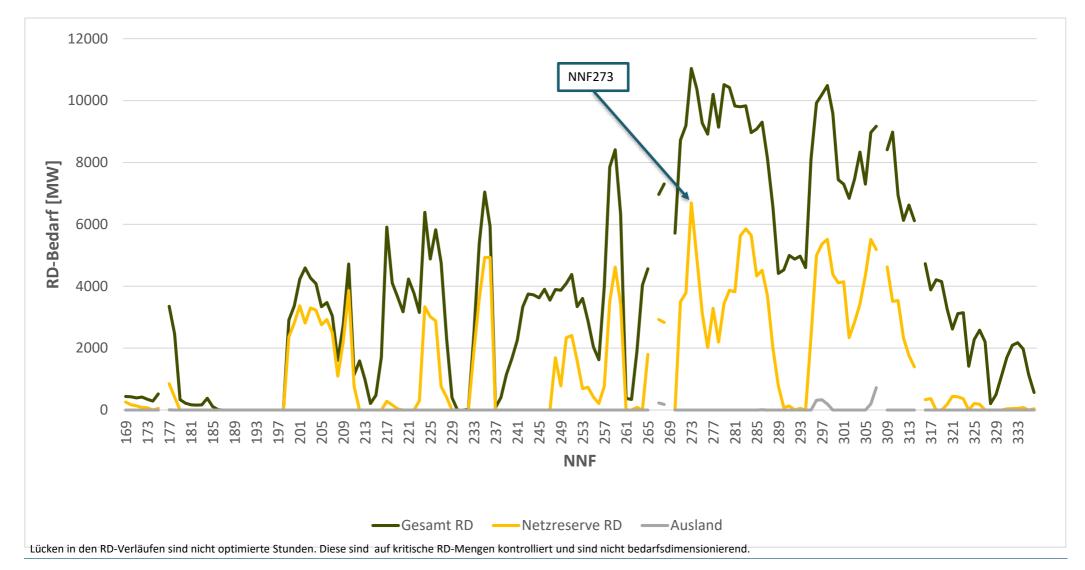
- Höchster Einsatz der Netzreserve-Kraftwerke wie in der BA19 t+1 in NNF 273
 - Anstieg der Netzreserve auf 5,8 GW von 4,3 GW in der BA19 t+1
 - Höherer Import aus Skandinavien und Export nach FR und CZ führt zu höheren Transportaufgaben
- Auslands-RD in der synthetischen Woche
 - Redispatch im Ausland wird in einigen Stunden der synthetischen Woche benötigt (z.B. NNF 273)
 - NNF sind charakterisiert durch hohe Transite Richtung PL, CZ, NL
 - Überlastungen sind vornehmlich auf den Grenzkuppelleitungen und deren Zubringern zu finden
 - ➤ Diese Situation ist durch Cross-Border-RD zu lösen
 - ➤ Keine neue Grenzsituation für die BA
- Der Jahreslauf wurde ebenfalls auf bedarfsdimensionierende Netznutzungsfälle untersucht. In Hinblick auf den Einsatz an Netzreserve ist jedoch der NNF 273 aus der synthetischen Woche bedarfsdimensionierend.

- 1. Aufgabenstellung und Zielsetzung
- 2. Berücksichtigung neuer politischer Rahmenbedingungen
- 3. Vorgehensweise / Methodik der Systemanalysen
- **4.** Eingangsparameter & Methodik Marktsimulation
- 5. Eingangsparameter & Methodik Flow-Based Market Coupling
- **6.** Eingangsparameter & Methodik Netzanalysen
- 7. Eingangsparameter & Methodik Stabilitätsanalysen
- 8. Identifikation der Grenzsituation

Grenzsituation t+1

Grenzsituation t+5

- 9. Marktsimulation
- 10. Netzanalysen
- 11. Bilanzielle Spannungs- und Blindleistungsanalysen
- 12. Fazit



Identifikation der Grenzsituation in t+5

RD-Ergebnisse synthetische Woche

Identifikation der Grenzsituation in t+5

Auswertung Synthetische Woche

- Höchster Einsatz der Netzreserve-Kraftwerke wie in der BA20 t+1 in NNF 273
 - Anstieg der Netzreserve auf 6,7 GW von 5,8 GW im Vergleich zu t+1
 - Der Gesamtredispatchbedarf sinkt im Vergleich zu BA20 t+1 um 3 GW auf rund 11 GW
 - Trotz des deutlich höheren Imports von 2,8 GW aus Skandinavien und GB kann durch den unterstellten Netzausbau ein weiterer Anstieg des Redispatchvolumens verhindert werden
- Redispatch im Ausland wird ggü. t+1 nur in wenigen Stunden der synthetischen Woche in geringer Höhe benötigt, der durch NNF-spezifische Maßnahmen vermieden werden kann
- Der Jahreslauf wurde ebenfalls auf bedarfsdimensionierende Netznutzungsfälle untersucht. In Hinblick auf den Einsatz an Netzreserve ist jedoch der NNF 273 aus der synthetischen Woche bedarfsdimensionierend.

9.	Marktsimulation
	Grenzsituation t+1
	Jahreslauf t+1
	Grenzsituation t+5
	Jahreslauf t+5

Erzeugungs-/Nachfragesituation in DE [GW] – Vergleich BA20 t+1 NNF 273 und BA19 t+1 NNF 273

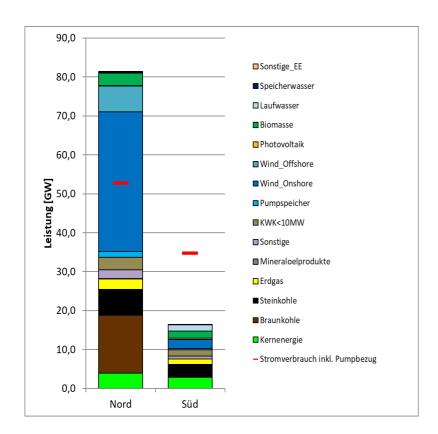
BA2020 t+1 NNF 273 FBMC

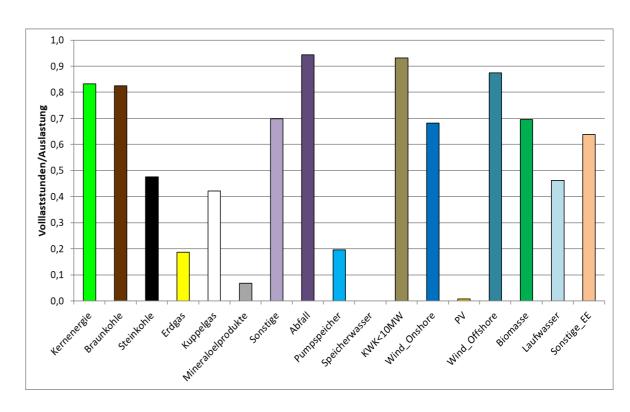
BAZ0Z0 tili Nit			
Leistung [GW]	Nord	Süd	Summe
Kernenergie	3,9	2,8	6,8
Braunkohle	14,9	0,0	14,9
Steinkohle	6,6	3,4	10,0
Erdgas	2,7	1,4	4,1
Mineraloelprodukte	0,1	0,0	0,1
Sonstige	2,2	0,7	2,9
KWK<10MW	3,2	1,6	4,8
Pumpspeicher	1,5	0,3	1,8
Summe konv.	35,2	10,2	45,4
Wind_Onshore	35,8	2,4	38,2
Wind_Offshore	6,7	0,0	6,7
Photovoltaik	0,1	0,3	0,4
Biomasse	3,2	1,8	5,0
Laufwasser	0,2	1,6	1,8
Speicherwasser	0,0	0,0	0,0
Sonstige_EE	0,3	0,1	0,4
Summe reg.	46,2	6,3	52,5
Summe Erzeugung	81,4	16,5	97,9
Pumpspeicher (Bezug)	0,0	0,0	0,0
Stromverbrauch	52,7	34,7	87,5
Stromverbrauch inkl. Pumpbezug	52,7	34,7	87,5
Saldo	28,7	-18,3	10,4

BA2019 t+1 NNF 273 FBMC

Leistung [GW]	Nord	Süd	Summe
Kernenergie	3,9	2,9	6,8
Braunkohle	15,1	0,0	15,1
Steinkohle	4,6	1,5	6,2
Erdgas	3,8	2,0	5,8
Mineraloelprodukte	0,2	0,0	0,2
Sonstige	1,9	0,6	2,5
KWK<10MW	2,9	1,4	4,4
Pumpspeicher	0,0	0,0	0,0
Summe konv.	32,5	8,4	40,9
Wind_Onshore	37,5	2,4	39,9
Wind_Offshore	7,3	0,0	7,3
Photovoltaik	0,7	1,9	2,5
Biomasse	3,2	1,7	4,9
Laufwasser	0,2	1,6	1,9
Speicherwasser	0,0	0,2	0,2
Sonstige_EE	0,2	0,1	0,3
Summe reg.	49,1	7,8	57,0
Summe Erzeugung	81,6	16,3	97,9
Pumpspeicher (Bezug)	0,0	0,0	0,0
Stromverbrauch	52,2	34,7	86,9
Stromverbrauch inkl. Pumpbezug	52,2	34,7	86,9
Saldo	29,4	-18,4	11,0

- BA 2020: Erzeugungsdefizit in Süd-DE (ca. -18,3 GW) ggü. einem Erzeugungsüberschuss in Nord-DE (ca. +28,7 GW)
- BA 2020: DE ist Nettoexporteur (ca. +10,4 GW)

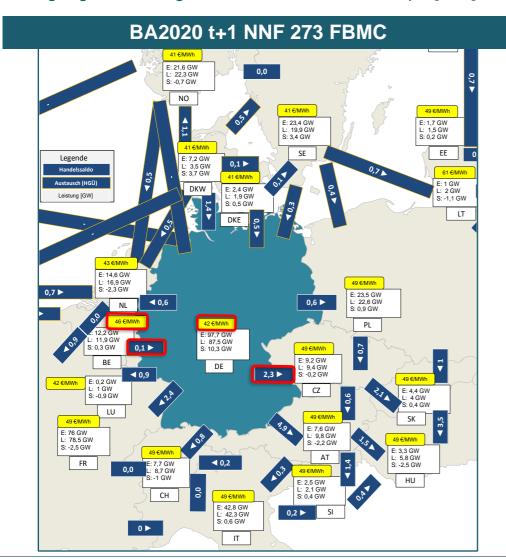


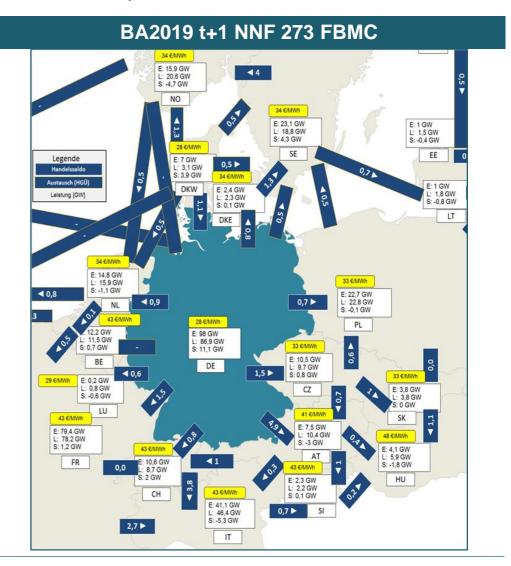


Erzeugungs-/Nachfragesituation in DE - NNF 273

■ Während der Lastanteil in Süd-DE bei 40% der Gesamtlast-DE liegt, wird in Süd-DE nur 17% der Erzeugung bereitgestellt.

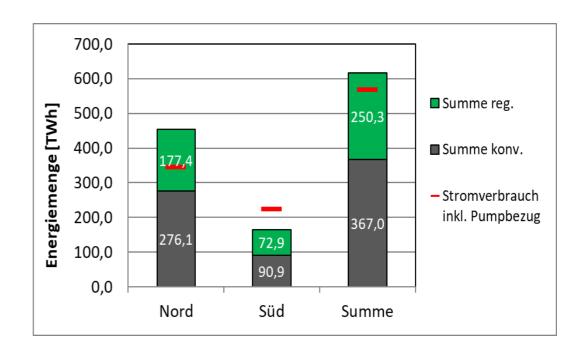
Erzeugungs-/Nachfrage-/Handelssituation in Europa [GW]





Erzeugungs-/Nachfrage-/Handelssituation in Europa [GW] - Vergleich Im- und Exporte zwischen BA20 und BA19 NNF 273

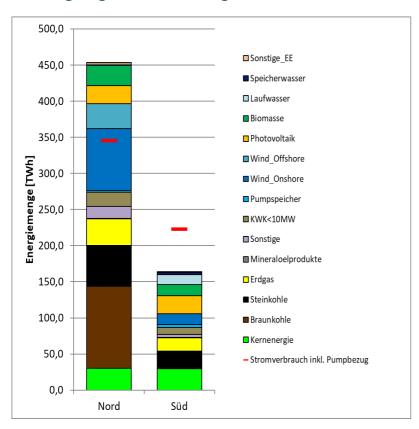
9.	Marktsimulation
	Grenzsituation t+1
	Jahreslauf t+1
	Grenzsituation t+5
	Jahreslauf t+5

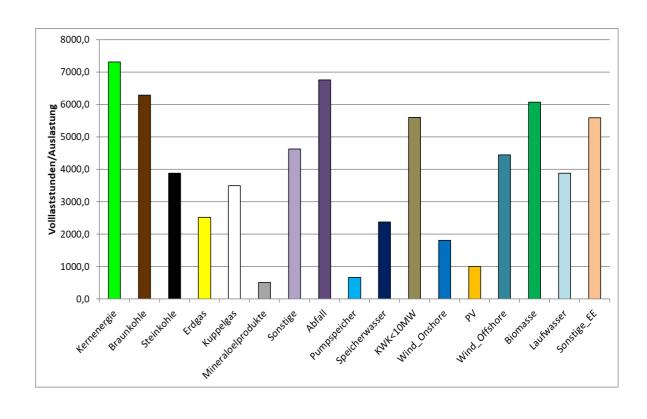


Erzeugungs- & Nachfragesituation DE

Energiemenge [TWh]	Nord	Süd	Summe
Kernenergie	30,0	29,3	59,3
Braunkohle	113,5	0,0	113,5
Steinkohle	56,5	24,8	81,3
Erdgas	37,0	18,5	55,4
Mineraloelprodukte	0,8	0,2	1,0
Sonstige	16,7	4,6	21,3
KWK<10MW	19,5	9,5	29,0
Pumpspeicher	2,2	4,0	6,1
Summe konv.	276,1	90,9	367,0
Wind_Onshore	85,9	14,9	100,8
Wind_Offshore	34,0	0,0	34,0
Photovoltaik	25,1	25,1	50,1
Biomasse	28,0	15,4	43,5
Laufwasser	1,8	13,4	15,2
Speicherwasser	0,1	2,9	3,1
Sonstige_EE	2,4	1,1	3,5
Summe reg.	177,4	72,9	250,3
Summe Erzeugung	453,5	163,8	617,3
Pumpspeicher (Bezug)	2,6	4,3	7,0
Stromverbrauch	342,5	218,2	560,7
Stromverbrauch inkl. Pumpbezug	345,1	222,6	567,7
Saldo	108,4	-58,7	49,7

- Erzeugungsdefizit in Süd-DE (-58,7 TWh) ggü. einem Erzeugungsüberschuss in Nord-DE (+108,4 TWh)
- DE ist Nettoexporteur (ca. +49,7 TWh)

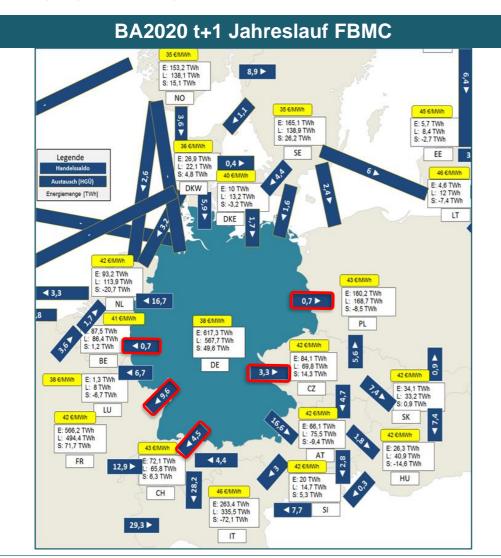


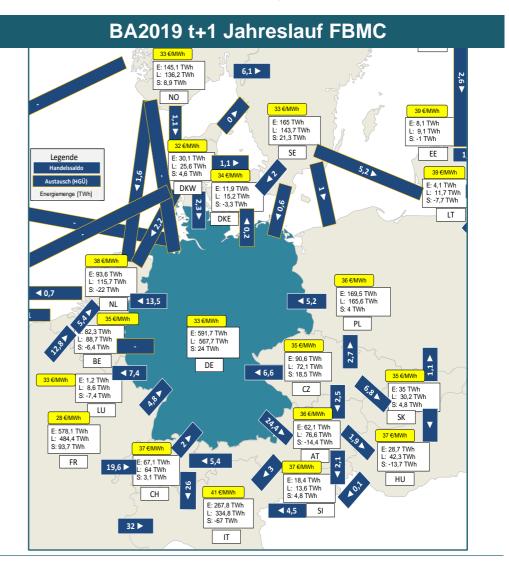


Erzeugungs- & Nachfragesituation DE

■ Während der Lastanteil in Süd-DE bei 39% der Gesamtlast-DE liegt, wird in Süd-DE nur 27% der Erzeugung bereitgestellt

Erzeugungs-/Nachfrage-/Handelssituation in Europa [TWh]





Erzeugungs-/Nachfrage-/Handelssituation in Europa [TWh] - Vergleich Im- und Exporte Jahresmenge

Inhaltsverzeichnis / Gliederung

9.	Marktsimulation
	Grenzsituation t+1
	Jahreslauf t+1
	Grenzsituation t+5
	Jahreslauf t+5

Erzeugungs-/Nachfragesituation in DE [GW] – Vergleich BA20 t+5 NNF 273 und BA20 t+1 NNF 273

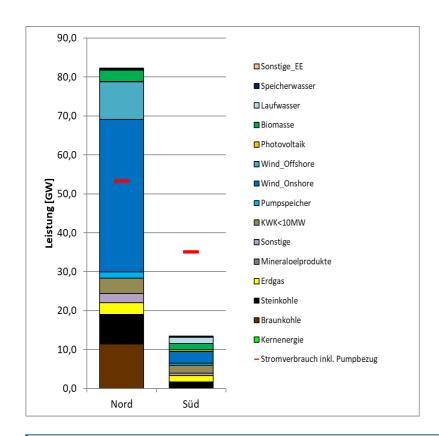
BA2020 t+5 NNF 273 FBMC

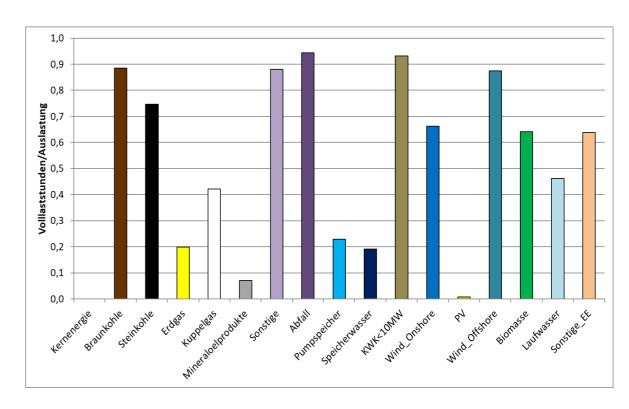
B/(LoLo tilo idit			
Leistung [GW]	Nord	Süd	Summe
Kernenergie	0,0	0,0	0,0
Braunkohle	11,4	0,0	11,4
Steinkohle	7,6	1,7	9,4
Erdgas	2,9	1,6	4,5
Mineraloelprodukte	0,1	0,0	0,1
Sonstige	2,3	0,7	3,0
KWK<10MW	4,0	2,0	6,0
Pumpspeicher	1,6	0,5	2,1
Summe konv.	30,0	6,5	36,4
Wind_Onshore	39,1	3,0	42,1
Wind_Offshore	9,7	0,0	9,7
Photovoltaik	0,1	0,4	0,5
Biomasse	3,0	1,6	4,6
Laufwasser	0,2	1,6	1,8
Speicherwasser	0,0	0,2	0,2
Sonstige_EE	0,3	0,1	0,4
Summe reg.	52,3	7,0	59,3
Summe Erzeugung	82,3	13,5	95,8
Pumpspeicher (Bezug)	0,0	0,0	0,0
Stromverbrauch	53,2	35,0	88,3
Stromverbrauch inkl. Pumpbezug	53,2	35,0	88,3
Saldo	29,1	-21,5	7,5

BA2020 t+1 NNF 273 FBMC

Leistung [GW]	Nord	Süd	Summe
Kernenergie	3,9	2,8	6,8
Braunkohle	14,9	0,0	14,9
Steinkohle	6,6	3,4	10,0
Erdgas	2,7	1,4	4,1
Mineraloelprodukte	0,1	0,0	0,1
Sonstige	2,2	0,7	2,9
KWK<10MW	3,2	1,6	4,8
Pumpspeicher	1,5	0,3	1,8
Summe konv.	35,2	10,2	45,4
Wind_Onshore	35,8	2,4	38,2
Wind_Offshore	6,7	0,0	6,7
Photovoltaik	0,1	0,3	0,4
Biomasse	3,2	1,8	5,0
Laufwasser	0,2	1,6	1,8
Speicherwasser	0,0	0,0	0,0
Sonstige_EE	0,3	0,1	0,4
Summe reg.	46,2	6,3	52,5
Summe Erzeugung	81,4	16,5	97,9
Pumpspeicher (Bezug)	0,0	0,0	0,0
Stromverbrauch	52,7	34,7	87,5
Stromverbrauch inkl. Pumpbezug	52,7	34,7	87,5
Saldo	28,7	-18,3	10,4

- BA 2020 t+5: Erzeugungsdefizit in Süd-DE (ca. -21,5 GW) ggü. einem Erzeugungsüberschuss in Nord-DE (ca. +29,1 GW)
- BA 2020 t+5: DE ist Nettoexporteur (ca. +7,5 GW)
- Bei steigendem Erzeugungsdefizit in Süd-DE (ca. +3,2 GW) und Erzeugungsüberschuss in Nord-DE (ca. +0,4 GW) verringert sich das Handelssaldo um ca. 2,9 GW

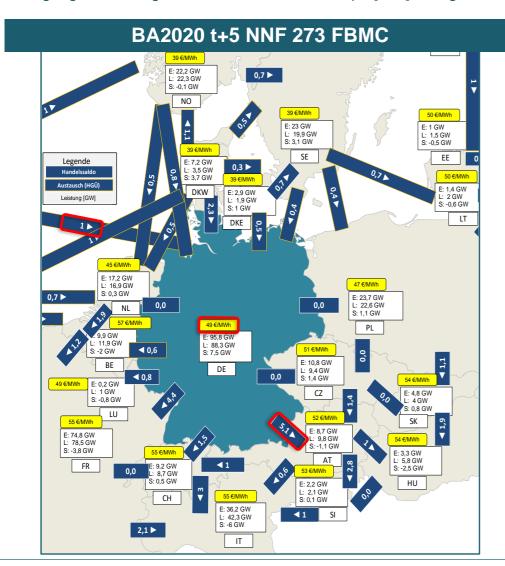


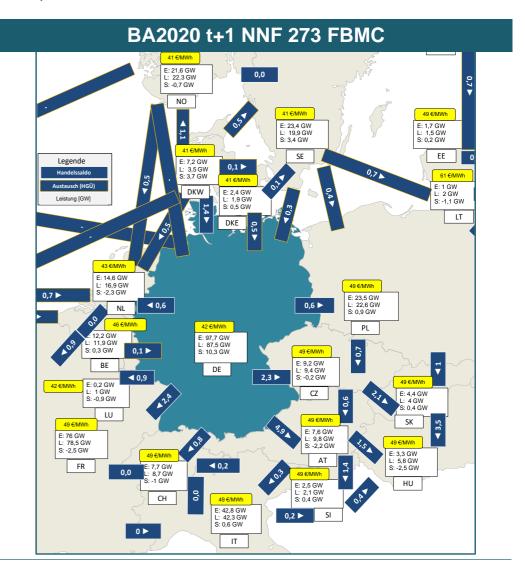


Erzeugungs-/Nachfragesituation in DE - NNF 273

■ Während der Lastanteil in Süd-DE bei 40% der Gesamtlast-DE liegt, wird in Süd-DE nur 14% der Erzeugung bereitgestellt.

Erzeugungs-/Nachfrage-/Handelssituation in Europa [GW]

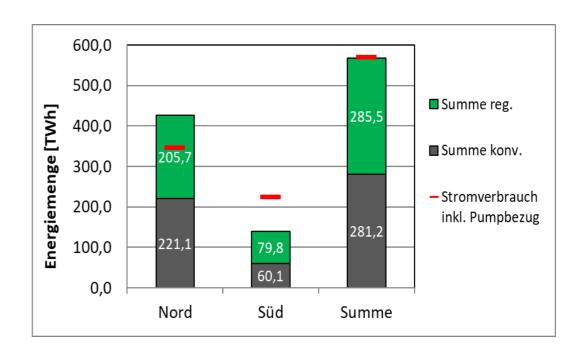




Erzeugungs-/Nachfrage-/Handelssituation in Europa [GW] - Vergleich Im- und Exporte zwischen BA20 t+1 und t+5 NNF 273

Inhaltsverzeichnis / Gliederung

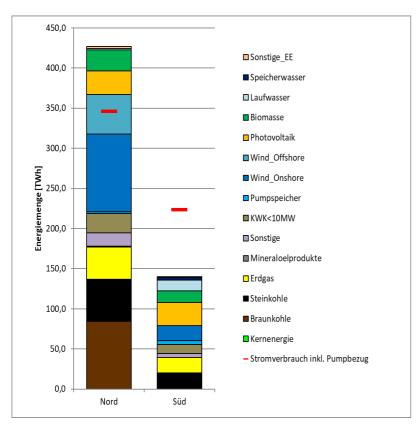
9.	Marktsimulation
	Grenzsituation t+1
	Jahreslauf t+1
	Grenzsituation t+5
	Jahreslauf t+5

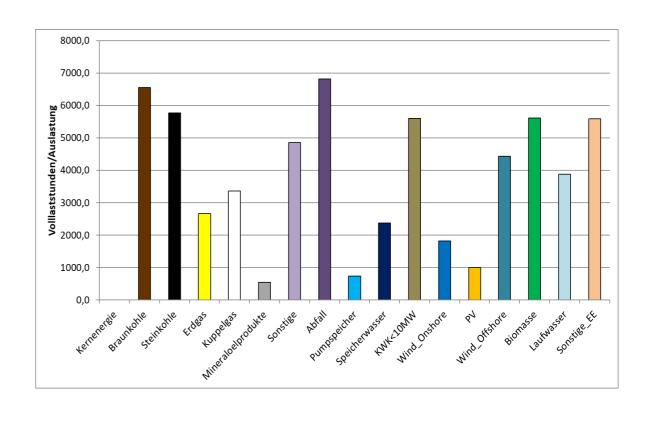


Erzeugungs- & Nachfragesituation DE

Energiemenge [TWh]	Nord	Süd	Summe
Kernenergie	0,0	0,0	0,0
Braunkohle	84,3	0,0	84,3
Steinkohle	52,3	20,1	72,4
Erdgas	40,5	19,2	59,7
Mineraloelprodukte	0,8	0,2	1,0
Sonstige	16,7	4,6	21,3
KWK<10MW	24,1	11,7	35,8
Pumpspeicher	2,4	4,4	6,8
Summe konv.	221,1	60,1	281,2
Wind_Onshore	96,9	18,9	115,8
Wind_Offshore	49,0	0,0	49,0
Photovoltaik	29,6	29,1	58,7
Biomasse	25,9	14,3	40,2
Laufwasser	1,8	13,4	15,2
Speicherwasser	0,1	2,9	3,1
Sonstige_EE	2,4	1,1	3,5
Summe reg.	205,7	79,8	285,5
Summe Erzeugung	426,8	140,0	566,7
Pumpspeicher (Bezug)	2,9	4,9	7,9
Stromverbrauch	343,2	218,7	561,8
Stromverbrauch inkl. Pumpbezug	346,1	223,6	569,7
Saldo	80,7	-83,6	-3,0

- Erzeugungsdefizit in Süd-DE (-83,6 TWh) ggü. einem Erzeugungsüberschuss in Nord-DE (+80,7 TWh)
- DE zeigt ein relativ ausgeglichenes Handelssaldo (ca. -3,0 TWh)





Erzeugungs- & Nachfragesituation DE

■ Während der Lastanteil in Süd-DE bei 39% der Gesamtlast-DE liegt, wird in Süd-DE nur 25% der Erzeugung bereitgestellt

Erzeugungs-/Nachfrage-/Handelssituation in Europa [TWh]

Inhaltsverzeichnis / Gliederung

10.	Netzanalysen
-----	--------------

Grenzsituation t+1

Jahreslauf t+1

Grenzsituation t+5

Jahreslauf t+5

Alternative Robustheitsprüfung t+5

Berechnungsergebnisse für den Winter 2020/21 – Ergebnisvergleich mit BA 19 t+1 (Winter 2019/20)

	BA1	9 (t+1)	BA20 (t+1)	
NNF	273			273
Freischaltplanung	ohne	mit	ohne	mit
Topologische Maßnahmen	mit		mit	
Ausfall	n-1	& EC	n-1 & EC	
Neg. RD Windeinspeisung (Onshore)	6,5	8,3	6,3	6,8
Neg. RD Windeinspeisung (Offshore)	3,6	2,7	2,4	2,6
Neg. RD marktbasierter KW in DE	3,0	3,7	4,8	4,1
Neg. RD im Ausland	0,7	0,7*	0,0	0,0
Summe <u>negativer</u> RD		15,5	13,6	13,4
Pos. RD marktbasierter KW in DE	9,4	9,6	6,5	6,1
Pos. RD durch Reduzierung von Pumpleistung in DE	0,0	0,0	0,0	0,0
Pos. RD ResKW in DE (P _{max, t+1} = 6,6 GW / P _{max, t+4} = 7,0 GW)	2,8	4,3	5,6	5,8
Pos. RD in AT (P _{max, Aug. 2019} = 1,5 GW)	1,5	1,5	1,5	1,5
Pos. RD im Ausland	0,0	0,0	0,0	0,0
Summe <u>positiver</u> RD	13,7	15,5	13,6	13,4

alle Angaben in GW

^{*} RD in Dänemark auf Grundlage der "Joint Declaration" Vereinbarung

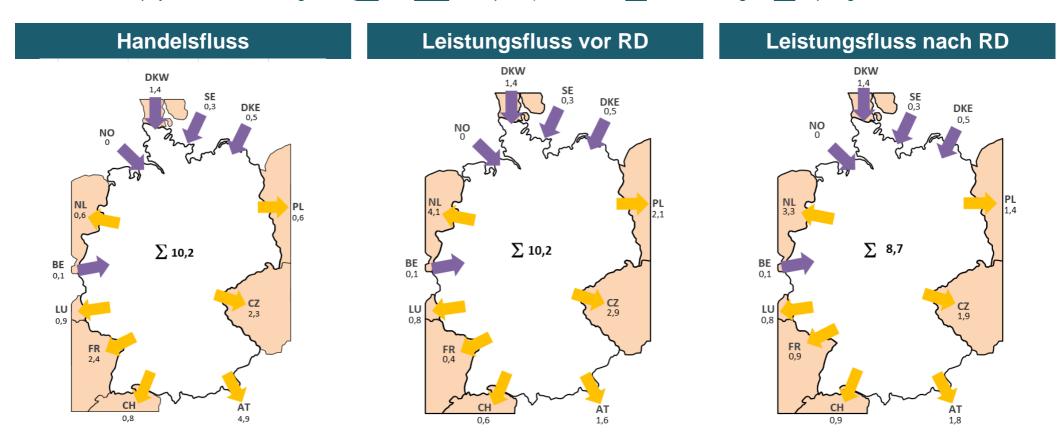
topologische Maßnahmen, Grenzsituation NNF273 & Jahreslauf

Grenzsituation NNF273

- 380 kV Anlage Eiberg (zwei Sammelschienenbetrieb)
- 220 kV Phasenschiebertransformator T105Q in Werk1 zugeschaltet
- 220 kV Leitung Sottrum-Götzdorf grün freigeschaltet
- 380/220-kV-Transformator T421 in Sottrum freigeschaltet
- 220 kV Anlage Gurtweil (zwei Sammelschienenbetrieb)
- 220 kV Anlage Eula (zwei Sammelschienenbetrieb)
- 220 kV Anlage Raitersaich (zwei Sammelschienenbetrieb)
- 220 kV Anlage Gersteinwerk (zwei Sammelschienenbetrieb)
- 220 kV Anlage Utfort (zwei Sammelschienenbetrieb)
- 220 kV Anlage Pasewalk (zwei Sammelschienenbetrieb)
- 380 kV Anlage Kriftel (zwei Sammelschienenbetrieb)
- 380 kV Anlage Vieselbach (zwei Sammelschienenbetrieb)

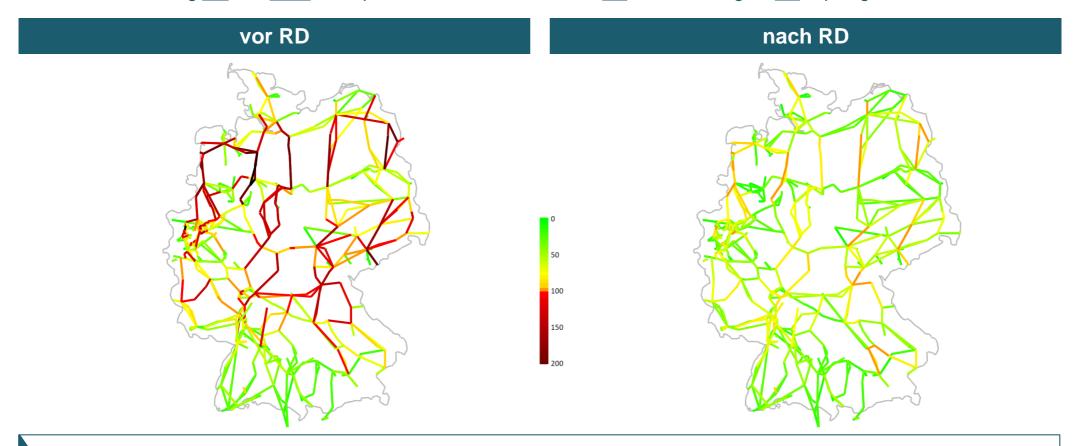
Jahreslauf

- 380 kV Anlage Eiberg (zwei Sammelschienenbetrieb)
- 220 kV Phasenschiebertransformator T105Q in Werk1 zugeschaltet
- 220 kV Leitung Sottrum-Götzdorf grün freigeschaltet
- 380/220-kV-Transformator T421 in Sottrum freigeschaltet
- 220 kV Anlage Gurtweil (zwei Sammelschienenbetrieb)
- 220 kV Anlage Eula (zwei Sammelschienenbetrieb)
- 220 kV Anlage Raitersaich (zwei Sammelschienenbetrieb)
- 220 kV Anlage Gersteinwerk (zwei Sammelschienenbetrieb)
- 220 kV Anlage Utfort (zwei Sammelschienenbetrieb)
- 220kV Leitung Ludersheim-Sittling 221 freigeschaltet
- 220 kV Anlage Sittling (zwei Sammelschienenbetrieb)



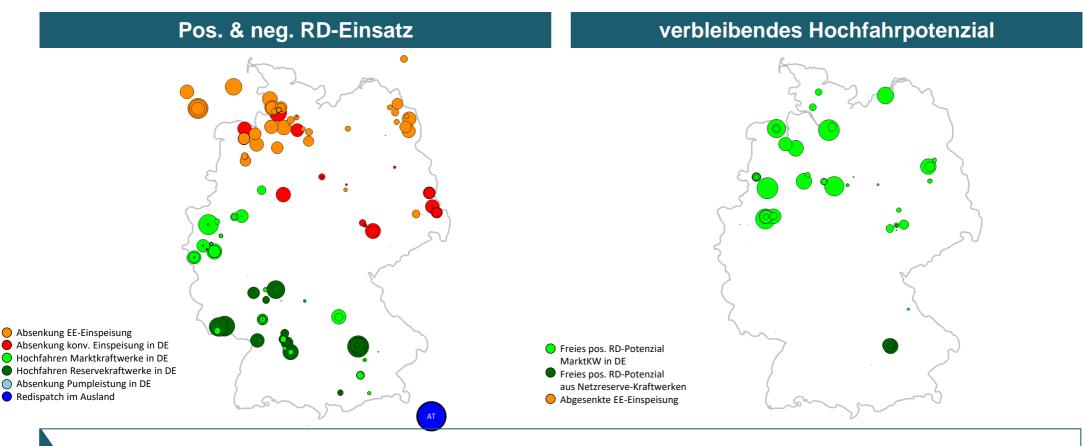
Handelsfluss und physikalischer Leistungsfluss (vor und nach Redispatch), NNF 273 - mit Freischaltungen, mit Topologische Maßnahmen

- Hoher Handelsimport aus Skandinavien (2,2 GW)
- Hoher Handelsexport nach Süden (FR/AT/CZ/CH) (10,4 GW)
- Hoher physikalischer Leistungsfluss an den Grenzen zu NL, PL, CZ und AT
- Durch RD in AT sinkt das Leistungsflusssaldo um 1,5 GW auf 8,7 GW



Stromkreisauslastung vor und nach Redispatch im EC-Fall, NNF 273 - mit Freischaltungen, mit Topologische Maßnahmen

- Weiträumige Engpässe im nördlichen und mittleren 380/220-kV-Netz (insbesondere in Nord-Süd-Richtung)
- Hohe Nord-Süd-Transportaufgabe zur Ableitung des Leistungsüberschusses aus Nord-DE
- Nach RD engpassfreies Netz, aber <u>alle</u> relevanten Nord-Süd-Achsen sind nahezu vollständig ausgelastet



Redispatch-Ergebnis im EC-Fall, NNF 273 - mit Freischaltungen, mit Topologische Maßnahmen

- Vollständige Nutzung des pos. RD-Potenzial von Marktkraftwerken in Süd- und West-DE
- Die Netzreserve-Kraftwerke im Raum Ingolstadt und Irsching werden nicht vollständig eingesetzt
- 1,5 GW Redispatchpotenzial in AT wird vollständig genutzt

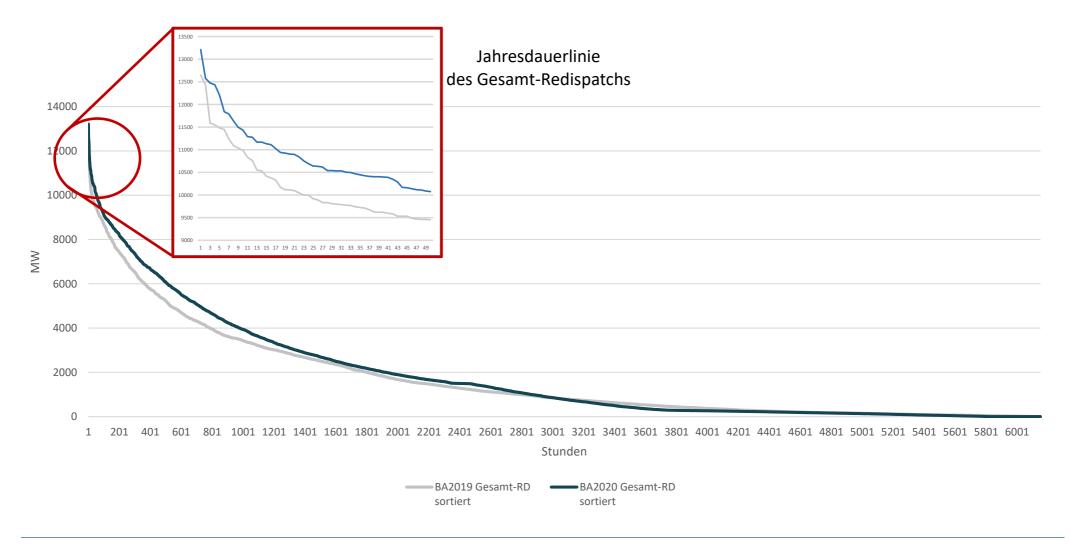
Inhaltsverzeichnis / Gliederung

10.	Netzanalysen
	Grenzsituation t+1
	Jahreslauf t+1
	Grenzsituation t+5
	Jahreslauf t+5
	Alternative Robustheitsprüfung t+5

Auswertung Jahreslauf t+1

Vergleich Jahresläufe BA2019 und BA2020

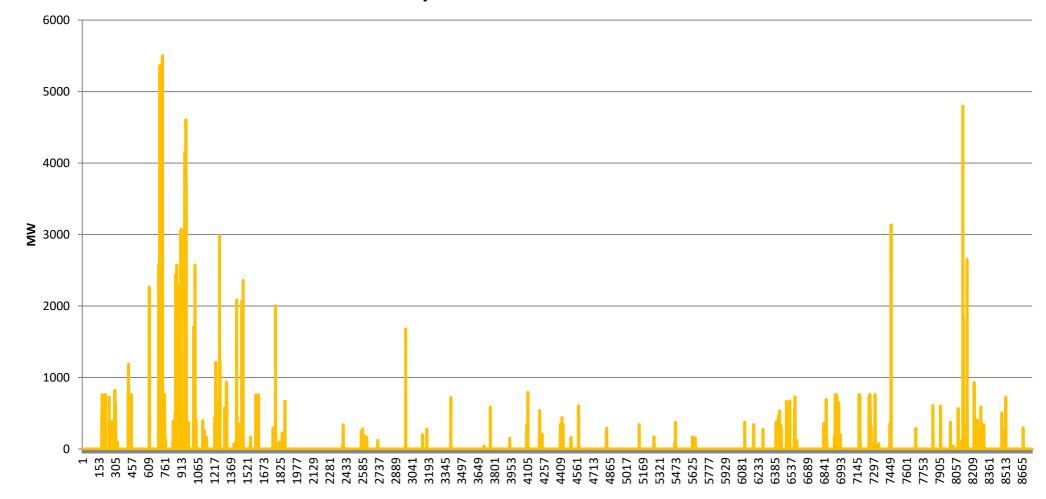
	BA19 t+1	BA20 t+1
	TWh	TWh
Neg. RD Windeinspeisung (Onshore)	3,3	4,1
Neg. RD Windeinspeisung (Offshore)	2,7	1,6
Neg. RD marktbasierter KW in DE	4,3	5,6
Neg. RD im Ausland	0,09	0,03
Summe negativer RD	10,4	11,3
Pos. RD marktbasierter KW in DE	7,3	7,7
Pos. RD durch Reduzierung von Pumpleistung	0,8	0,4
Pos. RD potenzieller Netzreservekraftwerke	1,3	0,3
Pos. RD in AT	1,0	2,6
Pos. RD im Ausland	0,03	0,35
Summe positiver RD	10,4	11,3



129

Häufig hoher Redispatch-Einsatz

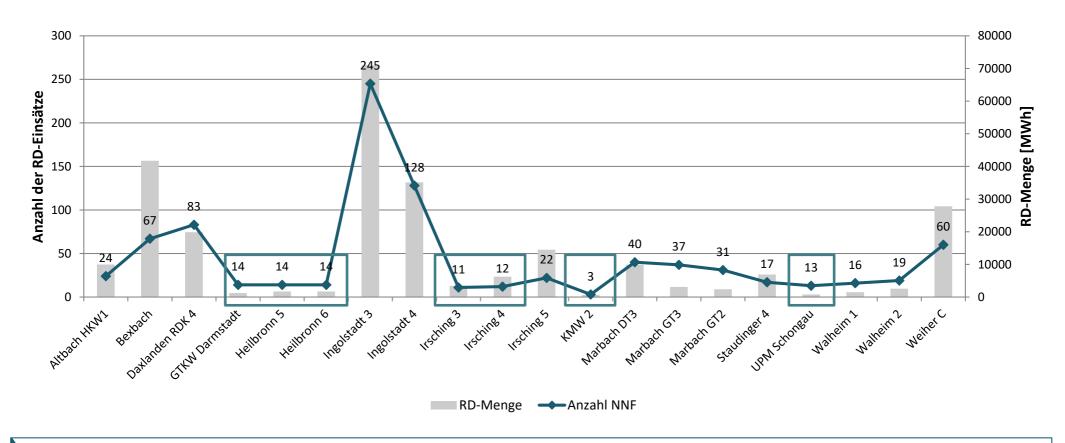
Vergleich des Gesamt-Redispatchs der Jahresläufe BA2019 (t+1) und BA2020 (t+1)



Netzreserve wird vor allem im Winter eingesetzt

Einsatz der Netzreserve im Jahreslauf BA2020 (t+1)

Redispatch mit Netzreserve-KW



Keine Auffälligkeiten im Netzreserveportfolio

Einsatz der Netzreserve-Kraftwerke

- Sieben Netzreserve-Kraftwerke werden weniger als 15 Mal im Jahreslauf zum Redispatch verwendet
- Für diese Netzreserve-Kraftwerke werden in der GS die Strafkosten um 1500 €/MWh erhöht

Alle Netzreservekraftwerke bleiben im robusten Portfolio

Einsatz der Netzreserve-Kraftwerke in NNF273

Netzreserve KW	Energieträger	Einsatz- Häufigkeit im initialen Jahreslauf	SK Basis €/MW	Pmax [MW]	Einsatz GS-Basis [MW]	<15	GS-Sensi +1500 [MW]	Einsatz- Häufigkeit im Jahreslauf zur Robustheitsprüfung	Robustes Netzreserve- Portfolio*
Altbach HKW1	Steinkohle	24		433	433		433	24	Х
Bexbach	Steinkohle	67		726	726		726	67	Х
Daxlanden RDK4	Erdgas	83		342	342		342	83	Χ
GTKW Darmstadt	Erdgas	14		94,6	94,6	Х	94,6	15	Х
Heilbronn 5	Steinkohle	14		125	125	Х	125	14	Χ
Heilbronn 6	Steinkohle	14		125	125	Х	125	14	Χ
Ingolstadt Block 3	Mineralölprodukte	245		375	375		375	245	Χ
Ingolstadt Block 4	Mineralölprodukte	128		386	51		46	128	Χ
Irsching Block 3	Mineralölprodukte	11		415	0	Х	0	1	Χ
Irsching Block 4	Erdgas	12		550	495	Х	398	13	Χ
Irsching Block 5	Erdgas	22		846	846		846	22	Χ
KMW 2	Erdgas	3		255,5	255,5	Х	255,5	3	Χ
Marbach DT3	Mineralölprodukte	40		262	262		262	40	Χ
Marbach GT2	Mineralölprodukte	31		85	77,4		77,4	37	Χ
Marbach GT3	Mineralölprodukte	37		77,4	85		85	31	Χ
Staudinger Block 4	Erdgas	17		580	580		580	17	Χ
UPM Schongau	Erdgas	13		64	64	Х	64	13	Х
Walheim 1	Steinkohle	16		96	96		96	16	Х
Walheim 2	Steinkohle	19		148	148		148	19	Х
Weiher C	Steinkohle	60		655,6	656		655,6	60	Х
		Summe eingese	tzt		5.836		5.733		
		Summe installie	ert	6.641					

Nicht genutzte KW in GS-Basisvariante Nicht genutzte KW in GS nach Strafkostenerhöhung

Erhöhung ggü. Basisvariante Reduzierung ggü. Basisvariante * das robuste Netzreserve-Portfolio wird gebildet aus den Kraftwerken, die im Jahreslauf zur Robustheitsprüfung eingesetzt werden

Inhaltsverzeichnis / Gliederung

10.	Netzanalysen
	Grenzsituation t+1
	Jahreslauf t+1
	Grenzsituation t+5
	Jahreslauf t+5
	Alternative Robustheitsprüfung t+5

Berechnungsergebnisse der Grenzsituation für den Winter 2024/25 – Ergebnisvergleich mit BA 19 t+4 und BA 20 t+1

Analysen	BA20 t+1	BA19 t+4	BA20 t+5	
NNF	273	307	273 - initial	273 - robust
Betrachtungsjahr	2020/21	2022/23	2024/25	
Ausfall	n-1 & EC	n-1 & EC	n-1 & EC	
Neg. RD Windeinspeisung (Onshore)	6,8	4,1	3,9	4,8
Neg. RD Windeinspeisung (Offshore)	2,6	2,0	3,7	3,0
Neg. RD PV	-	-	0,0	0,0
Neg. RD marktbasierter KW in DE	4,1	7,7	3,3	3,3
Neg. RD im Ausland	0,0	0,0	0,0	0,0
Summe <u>negativer</u> RD	13,4	13,8	10,9	11,1
Pos. RD marktbasierter KW in DE	6,1	3,3	2,9	2,9
Pos. RD durch Reduzierung von Pumpleistung in DE	0,0	0,0	0,0	0,0
Pos. RD Netzreserve in DE (P _{max, t+5} = 6,6 GW)	5,8	6,8	4,6	5,1
Pos. RD mit potenziellen Netzreserve KW in DE	-	-	2,1	1,6
Pos. RD in AT (P _{max} = 1,5 GW)	1,5	1,5	1,3	1,5
Pos. RD im Ausland	0,0	2,2	0,0	0,0
Summe <u>positiver</u> RD	13,4	13,8	10,9	11,1

alle Angaben in GW

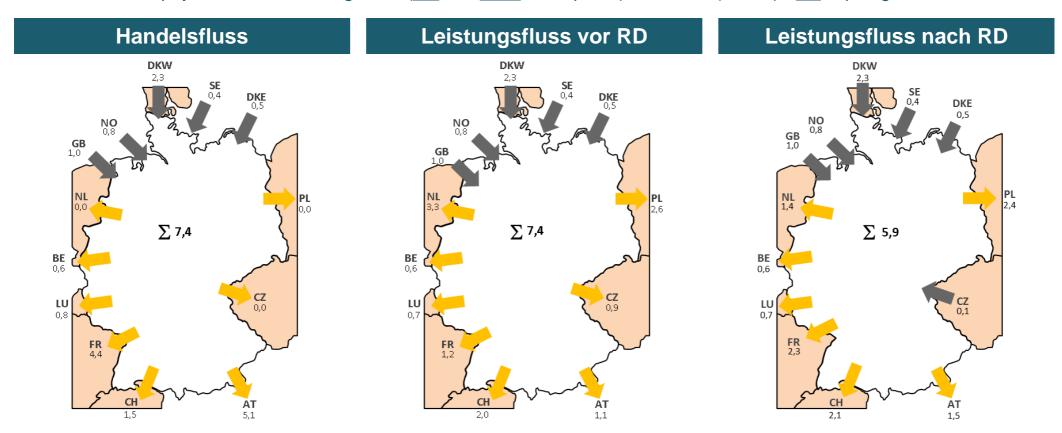
topologische Maßnahmen, Grenzsituation NNF273 & Jahreslauf

Grenzsituation NNF273

- 380 kV Anlage Sottrum (zwei Sammelschienenbetrieb)
- 380/220-kV-Transformator T421 in Sottrum ausgeschaltet
- 220 kV Phasenschiebertransformator T105Q in Werk1 zugeschaltet
- 380 kV Anlage Eickum (zwei Sammelschienenbetrieb)
- 380 kV Anlage Ganderkesee (zwei Sammelschienenbetrieb)
- 380 kV Anlage Gießen-Nord (zwei Sammelschienenbetrieb)
- 380 kV Anlage Vieselbach (zwei Sammelschienenbetrieb)
- 380 kV Anlage Kriftel (zwei Sammelschienenbetrieb)
- 380 kV Anlage Uerdingen (zwei Sammelschienenbetrieb)
- 380 kV Anlage Irsching (zwei Sammelschienenbetrieb)
- 220 kV-Stromkreisdreibein Amelsbüren in Westerkappeln ausgeschaltet

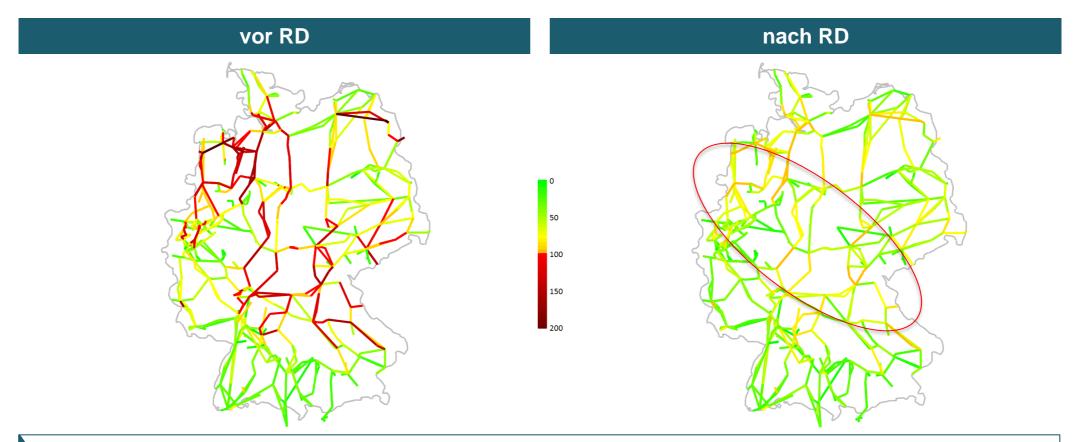
Jahreslauf

- 380 kV Anlage Sottrum (zwei Sammelschienenbetrieb)
- 380/220-kV-Transformator T421 in Sottrum ausgeschaltet
- 220 kV Phasenschiebertransformator T105Q in Werk1 zugeschaltet
- 380 kV Anlage Eickum (zwei Sammelschienenbetrieb)
- 380 kV Anlage Ganderkesee (zwei Sammelschienenbetrieb)
- 380 kV Anlage Gießen-Nord (zwei Sammelschienenbetrieb)
- 380 kV Anlage Vieselbach (zwei Sammelschienenbetrieb)
- 380 kV Anlage Kriftel (zwei Sammelschienenbetrieb)
- 380 kV Anlage Uerdingen (zwei Sammelschienenbetrieb)
- 380 kV Anlage Irsching (zwei Sammelschienenbetrieb)



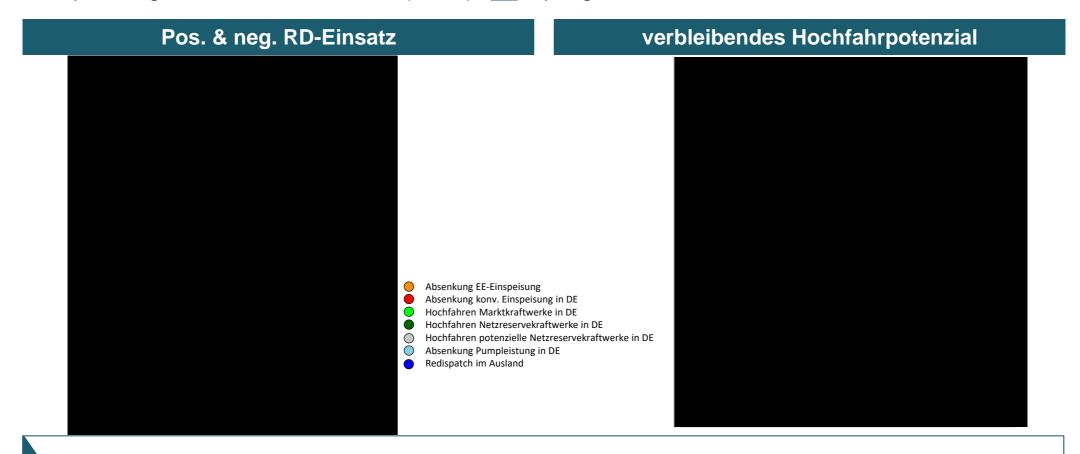
Handelsfluss und physikalischer Leistungsfluss (vor und nach Redispatch), NNF 273 (robust) - mit Topologische Maßnahmen

- Hoher Handelsimport aus Nordeuropa (5 GW)
- Hoher Handelsexport nach Süden (FR/AT/CH) (11 GW)
- Physikalisch stellt sich vor RD ein Leistungsfluss aus Deutschland von NL nach FR via BE ein
- Durch RD in AT sinkt das Leistungsflusssaldo um 1,5 GW auf 5,9 GW



Stromkreisauslastung vor und nach Redispatch im EC-Fall, NNF 273 (robust) - mit Topologische Maßnahmen

- Weiträumige Engpässe im nördlichen und mittleren 380/220-kV-Netz (insbesondere in Nord-Süd-Richtung)
- Hohe Nord-Süd-Transportaufgabe zur Ableitung des Leistungsüberschusses aus Nordwest-DE
- Nach RD engpassfreies Netz, aber alle relevanten Nord-Süd-Achsen sind nahezu vollständig ausgelastet



Redispatch-Ergebnis im EC-Fall, NNF 273 (robust) - mit Topologische Maßnahmen

- Das positive Redispatch-Potenzial von bestehenden und potenziellen Netzreservekraftwerken in Süd- und West-DE wird nicht vollständig benötigt.
- Das Redispatchpotenzial in AT wird vollständig genutzt.

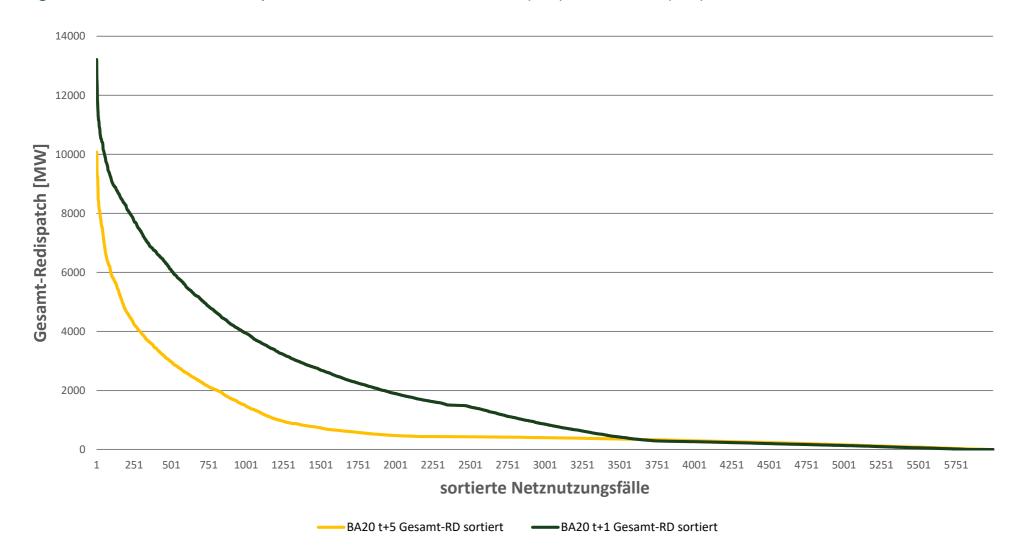
Inhaltsverzeichnis / Gliederung

10.	Netzanalysen
	Grenzsituation t+1
	Jahreslauf t+1
	Grenzsituation t+5
	Jahreslauf t+5
	Alternative Robustheitsprüfung t+5

Netzanalyse - Ergebnisse und deren Einordnung (t+5)

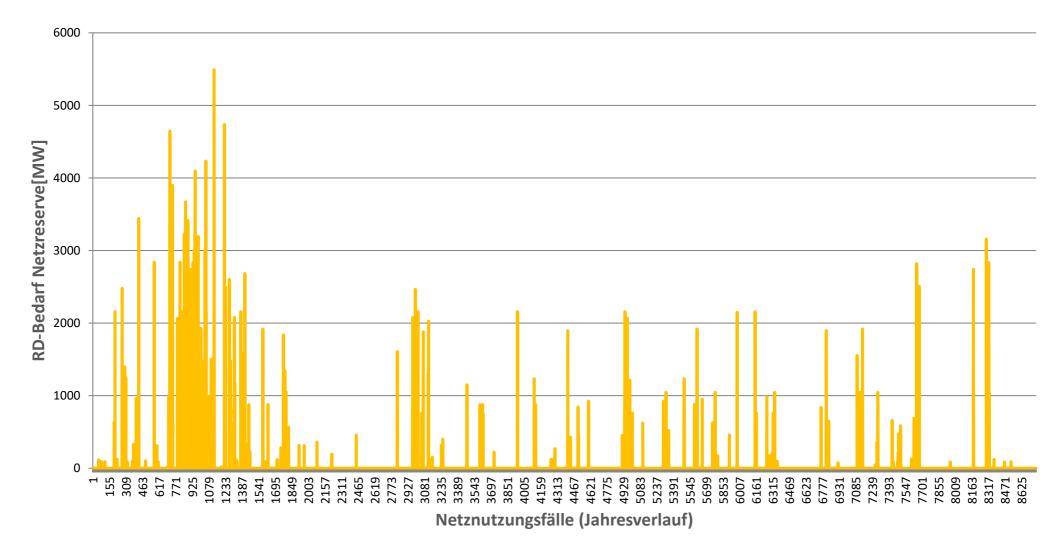
Berechnungsergebnisse des Jahreslaufs für den Winter 2024/25 – Ergebnisvergleich mit BA 19 t+4 und BA 20 t+1

Analysen	BA20 t+1	BA19 t+4	BA20 t+5 (initial)	BA20 t+5 (robust)
Netzausbau (gemäß Monitoring)	2020/21	2022/23	2024/25	
NNF	TWh	TWh	TWh	TWh
Neg. RD Windeinspeisung (Onshore)	4,1	2,4	1,1	1,1
Neg. RD Windeinspeisung (Offshore)	1,6	0,8	2,3	2,3
Neg. RD PV-Einspeisung	-	-	0,1	0,1
Neg. RD marktbasierter KW in DE	5,6	5,9	1,7	1,7
Neg. RD im Ausland	0,03	0,02	0,04	0,04
Summe negativer RD	11,3	9,1	5,3	5,3
Pos. RD marktbasierter KW in DE	7,7	4,4	4,3	4,4
Pos. RD durch Reduzierung von Pumpleistung	0,4	0,9	0,2	0,1
Pos. RD mit Netzreservekraftwerken in DE	0,3	2,3	0,3	0,3
Pos. RD mit potenziellen Netzreserve KW in DE	-	-	0,2	0,1
Pos. RD in AT	2,6	1,3	0,4	0,4
Pos. RD im Ausland	0,35	0,14	0,00	0,00
Summe positiver RD	11,3	9,1	5,3	5,3



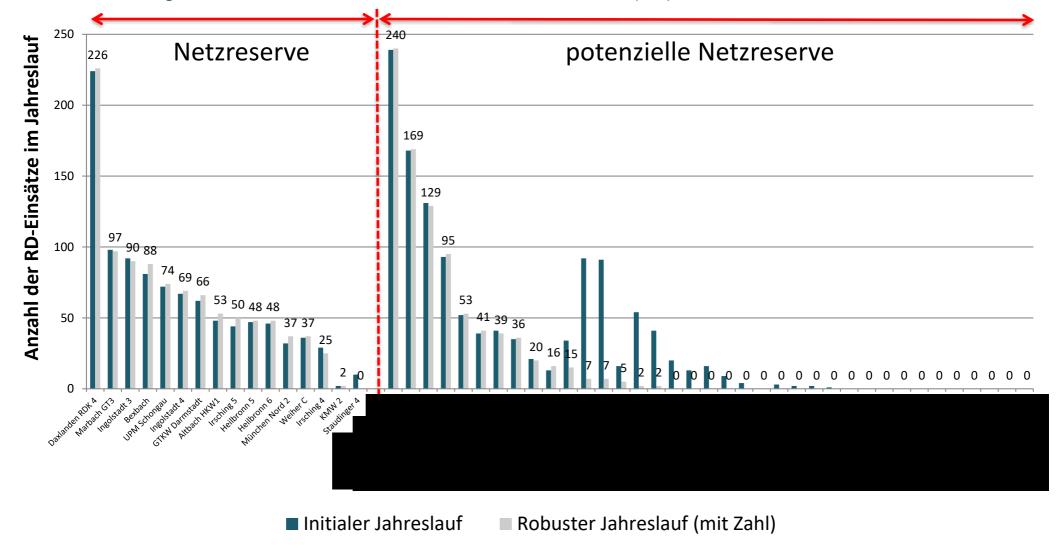
Rückläufiger Redispatch-Einsatz

Vergleich des Gesamt-Redispatchs der Jahresläufe BA20 (t+1) und BA20 (t+5)



Netzreserve wird vor allem im Winter eingesetzt

Einsatz der aktuellen und potenziellen Netzreserve im Jahreslauf BA2020 (t+5)



Auswertung der initialen und robusten Jahresläufe t+5

Indikation der möglichen Netzreserve im robusten Jahreslauf BA2020 (t+5)

Ermittlung des robusten Netzreserve-Portfolios t+5

Einsatz der heutigen Netzreserve-Kraftwerke

Netzreserve KW	Energieträger	Einsatz- Häufigkeit im <u>initialen</u> Jahreslauf	SK Basis €/MW	Pmax [MW]	Einsatz <u>initiale</u> GS [MW]	<20	Einsatz <u>robuste</u> GS [MW]	Einsatz- Häufigkeit im <u>robusten</u> Jahreslauf	Robustes Netzreserve- Portfolio*
Altbach HKW1	Steinkohle	48		433	433		433	53	Х
Bexbach	Steinkohle	81		726	726		726	88	X
Daxlanden RDK 4	Erdgas	224		342	342		342	226	X
GTKW Darmstadt	Erdgas	62		94,6	94,6		94,6	66	X
Heilbronn 5	Steinkohle	47		125	125		125	48	X
Heilbronn 6	Steinkohle	46		125	125		125	48	Х
Ingolstadt 3	Mineralölprodukte	92		375	0		375	90	Х
Ingolstadt 4	Mineralölprodukte	67		386	0		40,8	69	Х
Irsching 4	Erdgas	29		550	533,7		550	25	Х
Irsching 5	Erdgas	44		846	846		846	50	Х
KMW 2	Erdgas	2		255,5	253,5	Х	255,5	2	Х
Marbach GT3	Mineralölprodukte	98		85	85		85	97	Х
München Nord 2	Steinkohle	32		332,7	332,7		332,7	37	Х
Staudinger 4	Erdgas	10		580	0	Х	0	0	
UPM Schongau	Erdgas	72		64	64		64	74	Х
Weiher C	Steinkohle	36		655,6	655,6		655,6	37	Х
		Summe eingesetzt			4.616,1		5.050,2		
		Summe installiert		5.975,4	4.634,4		5.395,4		5.395,4

Nicht genutzte KW in GS-Basisvariante Nicht genutzte KW in GS nach Strafkostenerhöhung

Erhöhung ggü. Basisvariante Reduzierung ggü. Basisvariante

^{*} Das robuste Netzreserve-Portfolio wird gebildet aus den Kraftwerken, die im Jahreslauf oder in der Grenzsituation zur Robustheitsprüfung eingesetzt werden.

Ermittlung des robusten Netzreserve-Portfolios t+5

Einsatz der <u>potenziellen</u> Netzreserve-Kraftwerke

potenzielle Netzreserve KW	Energieträger	Einsatz- Häufigkeit im <u>initialen</u> Jahreslauf	SK Basis €/MW	Pmax [MW]	Einsatz <u>initiale</u> GS [MW]	<20	Einsatz <u>robuste</u> GS [MW]	Einsatz- Häufigkeit im <u>robusten</u> Jahreslauf	Robustes Netzreserve- Portfolio*
		239						240	Χ
		168						169	Х
		131						129	Х
		93						95	Х
		52						53	Χ
		39						41	Х
		41						39	Х
		35						36	Χ
		21						20	Х
		13				Х		16	Χ
		34						15	Χ
		92						7	Χ
		91						7	Х
		16				Х		5	Х
		54						2	Х
		41						2	Х
		20						0	
		13				Х		0	
		16				Х		0	
		9				Х		0	
		4				X		0	
		0				Χ		0	
		3				X		0	
		2				X		0	
		2				Х		0	
		1				Х		0	
		0				Х		0	
		0				Х		0	
		0				Х		0	
		0				Х		0	
		0				Х		0	
		0				Х		0	
		0				X		0	
		0				X		0	
		0				X		0	
		0				X		0	
		0			2 007 2	Х	1 500 0	0	
		Summe einge	setzt	0.246.4	2.097,2		1.608,9		2.056.2
		Summe instal	liert	8.246,1	2.253,2		1.781,2		2.956,2

Auswertung des robusten Netzreserve-Portfolios t+5

Übersicht des untersuchten und robust ermittelten potenziellen Netzreserve-Portfolios

Inhaltsverzeichnis / Gliederung

10.	Netzanalysen
	Grenzsituation t+1
	Jahreslauf t+1
	Grenzsituation t+5
	Jahreslauf t+5
	Alternative Robustheitsprüfung t+5

Motivation

- Der aktuelle Entwurf des KVBG (Stand 29.01.2020) nimmt Steinkohlekraftwerke <150MW von der Anordnung zur Stilllegung bis zum Jahr
 2030 aus. Dies wird interpretiert als Motivation, diese (zumeist) Industriekraftwerke bis dahin möglichst ohne ordnungsrechtliche Vorgaben zu betreiben. Sie werden daher in dieser Alternativbetrachtung nicht dem Redispatchpotenzial zugeordnet.
- Die Bestimmung des robusten Reserveportfolios wird stärker an den Bedarf in der dimensionierenden Grenzsituation gekoppelt. Daher werden alle Netzreserve-KW ohne Einsatz in der Grenzsituation aus dem robusten Reserveportfolio ausgeschlossen.
- Die vorgenannten Maßnahmen führen zum Ausschluss einer größeren Anzahl meist kleinerer Kraftwerke aus dem Reserveportfolio. Es ist zu prüfen, ob der Redispatchbedarf weiterhin durch inländische Kraftwerke gedeckt werden kann. Daher wird in dieser Alternativbetrachtung das Kraftwerk Staudinger 4 als "Kompensationspotenzial" für die Ausschlüsse modelliert und in der Robustheitsprüfung trotz Nicht-Einsatz in den initialen Berechnungen nicht mit erhöhten Strafkosten beaufschlagt (Interpretation: "Slack" für anderweitig nicht zu deckenden Redispatch-Bedarf).

<u>Durchführung</u>

- Es wird die Grenzsituation bei Ausschluss aller potenziellen Netzreserve-KW < 150 MW vom Redispatch neu gerechnet.
- Ausschließlich potenzielle Netzreserve-KW mit Redispatch-Einsatz in der Grenzsituation werden für den Jahreslauf freigegeben.
- Die Modellierung der bestehenden Netzreservekraftwerke bleibt unverändert mit Ausnahme der "Slack"-Interpretation des Kraftweks Staudinger 4 (kein Strafkostenaufschlag).

150

RD-Einsatz in der t+5 Grenzsituation

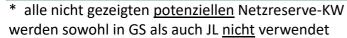
NNF	BA20 t+5 <u>robuste</u> GS NNF 273	BA20 t+5 <u>alternative</u> GS NNF 273
Betrachtungsjahr	202	4/25
Ausfall	n-1	& EC
Neg. RD Windeinspeisung (Onshore)	4,8	5,0
Neg. RD Windeinspeisung (Offshore)	3,0	3,1
Neg. RD PV	0,0	0,0
Neg. RD marktbasierter KW in DE	3,3	3,2
Neg. RD im Ausland	0,0	0,0
Summe <u>negativer</u> RD	11,1	11,3
Pos. RD marktbasierter KW in DE	2,9	2,9
Pos. RD durch Reduzierung von Pumpleistung in DE	0,0	0,0
Pos. RD Netzreserve in DE (P _{max, t+5} = 6,0 GW)	5,1	5,4
Pos. RD mit potenziellen Netzreserve KW in DE	1,6	1,5
Pos. RD in AT (P _{max} = 1,5 GW)	1,5	1,5
Pos. RD im Ausland	0,0	0,0
Summe <u>positiver</u> RD	11,1	11,3

alle Angaben in GW

Einsatz des Netzreserve-Portfolios in der t+5 JL-Sensitivität

		Urs	prünglich	e Ergebnisse		Alternativ	e Robustheitsp	orüfung
heutige Netzreserve-KW	Einsatz- Häufigkeit im <u>initialen</u> Jahreslauf	Pmax [MW]	Einsatz <u>robuste</u> GS [MW]	Einsatz- Häufigkeit im <u>robusten</u> Jahreslauf	Robustes Netzreserve- Portfolio	Einsatz <u>alternative</u> GS [MW]	Einsatz- Häufigkeit Im <u>alternativen</u> JL	Alternatives robustes Netzreserve- Portfolio*
Altbach HKW1	48	433	433	53	Х	433	48	Х
Bexbach	81	726	726	88	X	726	85	Х
Daxlanden RDK 4	224	342	342	226	Х	342	227	Х
GTKW Darmstadt	62	94,6	94,6	66	Х	94,6	62	Х
Heilbronn 5	47	125	125	48	Х	125	50	Х
Heilbronn 6	46	125	125	48	X	125	47	Х
Ingolstadt 3	92	375	375	90	Х	375	100	Х
Ingolstadt 4	67	386	40,8	69	Х	386	79	Х
Irsching 4	29	550	550	25	Х	550	31	Х
Irsching 5	44	846	846	50	Х	846	47	X
KMW 2	2	255,5	255,5	2	X	255,5	1	Х
Marbach GT3	98	85	85	97	Х	85	98	Х
München Nord 2	32	332,7	332,7	37	Х	332,7	30	Х
Staudinger 4*	10	580	0	0		0	12	X
UPM Schongau	72	64	64	74	Х	64	69	X
Weiher C	36	655,6	655,6	37	Х	655,6	39	Х
Summe eingesetzt			5.050,2			5.395,4		
Summe installiert		5.975,4	5.395,4		5.395,4	5.395,4		5.975,4

^{*} Staudinger 4 erhält in der Sensitivität keinen Strafkostenaufschlag



Einsatz des potenziellen Netzreserve-Portfolios in der t+5 JL-Sensitivität

		Ursprüngliche Ergebnisse					Alternative Robustheitsprüfung		
potenzielle Netzreserve-KW*	Einsatz- Häufigkeit im <u>initialen</u> Jahreslauf	Pmax [MW]	Einsatz robuste GS [MW]	Einsatz- Häufigkeit im <u>robusten</u> Jahreslauf	Robustes Netzreserve- Portfolio*	Einsatz alternative GS [MW]	Einsatz- Häufigkeit Im <u>alternativen</u> JL	Alternatives robustes Netzreserve- Portfolio*	
	239			240	Х		-		
	168			169	Х		170	X	
	131			129	Х		-		
	93			95	Х		-		
	52			53	Х		54	X	
	39			41	Х		-		
	41			39	Х		-		
	35			36	Х		-		
	21			20	Х		25	Х	
	13			16	X		18	Х	
	34			15	Х		-		
	16			5	Х		17	Х	
	91			7	Х		-		
	92			7	Х		-		
	54			2	X		-		
	41			2	Х		-		
Summe eingesetzt			1.608,9			1.527,3			
Summe installiert			1.781,2		2.956,2	2.072,0		2.072,0	

Im Gegensatz zur
BA20-GS eingesetzt

Nicht berücksichtigt (Pmax < 150MW) Nicht berücksichtigt (ohne Einsatz in GS)

Ergebnisinterpretation

Grenzsituation

- In der Grenzsituation BA20 t+5 wurden ursprünglich 181,2 MW aus potenziellen Netzreserve-KW < 150 MW zum Redispatch eingesetzt.
- Diese Leistung wird in der alternativen GS durch das Netzreserve-KW Ingolstadt 4 (+350 MW) und das potenzielle Netzreserve-substituiert.
- Bislang freie Potenziale werden nun eingesetzt, sodass kein ausländisches RD-Potenzial benötigt wird. Aufgrund geringerer netztechnischer Effizienz erhöht sich der Redispatch-Bedarf um rund 300 MW.

<u>Jahreslauf</u>

- Es gibt leichte Verschiebungen in der Einsatzhäufigkeit und das Kraftwerk Staudinger 4 wird nunmehr auch zum Redispatch eingesetzt. Die Redispatch-Mengen sind identisch und es besteht weiter kein Bedarf an Redispatch-Potenzial im Ausland.
- Auswirkungen auf das robuste Netzreserveportfolio
 - Die installierte Leistung der Netzreserve-KW steigt durch die Hinzunahme von Staudinger 4 von 5,4 GW auf 6,0 GW
 - Die installierte Leistung der potenziellen Netzreserve-KW sinkt von 3,0 GW auf 2,1 GW durch den Entfall der Kraftwerke
 < 150 MW und weiterer Kraftwerke wegen des Nicht-Einsatzes in der Grenzsituation.

Inhaltsverzeichnis / Gliederung

- 1. Aufgabenstellung und Zielsetzung
- 2. Randbedingungen
- 3. Vorgehensweise / Methodik der Systemanalysen
- **4.** Eingangsparameter & Methodik Marktsimulation
- 5. Eingangsparameter & Methodik Flow-Based Market Coupling
- **6.** Eingangsparameter & Methodik Netzanalysen
- 7. Eingangsparameter & Methodik Stabilitätsanalysen
- 8. Identifikation der Grenzsituation
- **9.** Marktsimulation
- 10. Netzanalysen
- 11. Bilanzielle Spannungs- und Blindleistungsanalysen
- **12.** Fazit

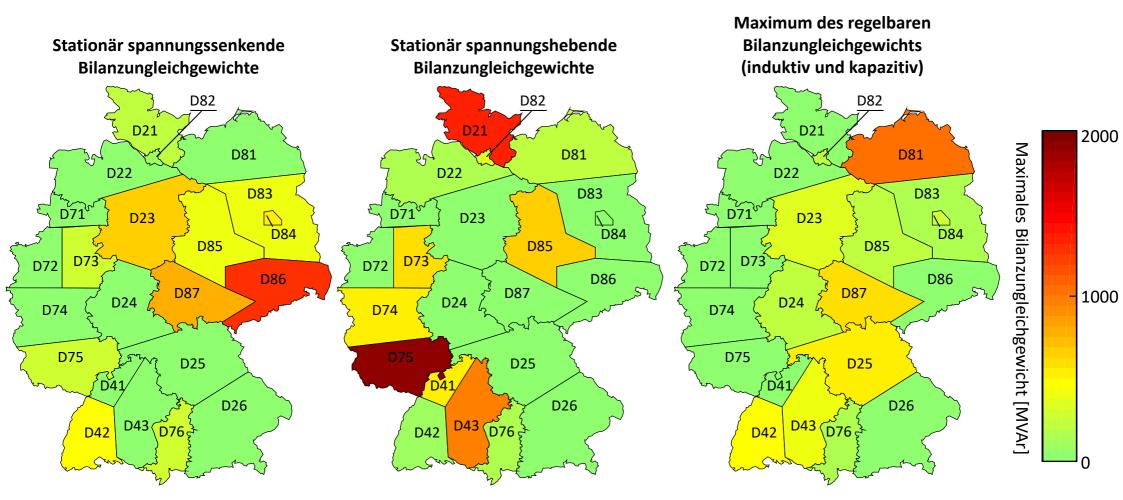
Ziel und Aussagekraft der Analysen zum Blindleistungsbedarf

Ziele

- Indikative Ermittlung und regionale Verortung von Blindleistungsbedarfen für die stationäre Spannungshaltung und Wahrung der dynamischen Spannungsstabilität.
- Validierung bereits ergriffener/geplanter Maßnahmen zur Blindleistungskompensation mit Blick auf die Deckung der zu erwartenden Bedarfe.

Aussagen

- Regionale Ausgeglichenheit der Blindleistungsbilanz ist ein Indikator dafür, dass die Spannungen in diesen Netzbereichen grundsätzlich in den zulässigen Grenzen gehalten werden können.
- Regionale bilanzielle Ungleichgewichte (Unterdeckungen des Bedarfs) deuten darauf hin, dass Spannungsbandverletzungen vorliegen können und Gegenmaßnahmen erforderlich sind und vorhanden sein müssen.



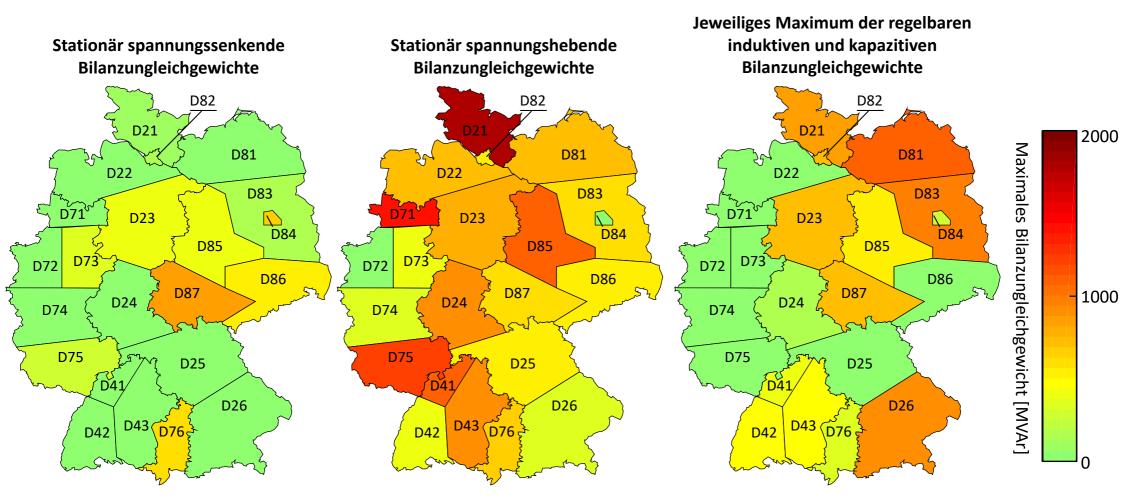
Blindleistungsbedarfe BA 2020 (t+1) – 2020/21

Regionale Bilanzierung des Blindleistungsbedarfs*

^{*} Etwaige notwendige Maßnahmen zur Deckung der regionalen Bedarfe werden in nachgelagerten Prozessen identifiziert (z.B. Betriebliche Maßnahmen oder zusätzliche Kompensationsanlagen).

Fazit der Analysen zum Blindleistungsbedarf (t+1)

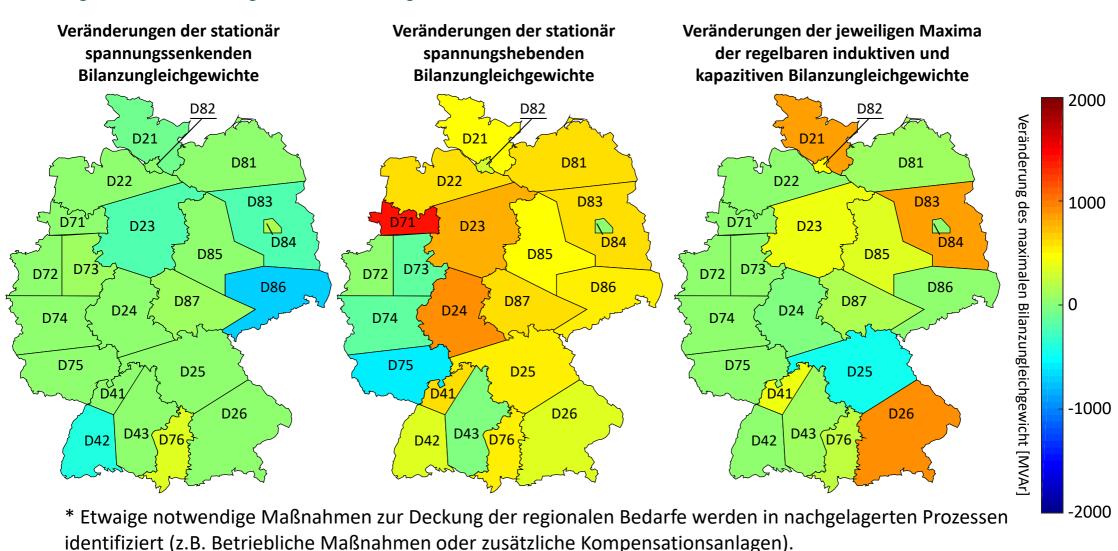
- Einige Regionen weisen signifikante bilanzielle Unterdeckungen auf, die bereits heute zeitweise Verletzungen der zulässigen Spannungsgrenzen aufweisen und betriebliche Maßnahmen zu deren Einhaltung erfordern. Zusätzliche Abschaltungen von Kraftwerken oder ein geringer Einsatz konventioneller Kraftwerke werden diese Situation verschärfen.
 - Spannungsprobleme treten in verschiedenen Ausprägungen und je nach Netzsituation heute bereits verteilt in Deutschland auf. Darüber hinaus treten vermehrt in Mitteldeutschland in Abhängigkeit von Lastflussverschiebungen auch dynamische Spannungssprünge auf.
 - Vor allem im 50Hertz-Gebiet und Niedersachsen (NS) sind aufgrund fehlender spannungssenkender Potentiale Abschaltungen von Stromkreisen zu erwarten. Auch in Rheinland-Pfalz (RP) und in Baden-Württemberg (BW) fehlt es an spannungssenkenden Potentialen.
 - In RP und Schleswig-Holstein (SH) fehlt es signifikant an stationär spannungshebenden Potentialen. Temporär ist mit stärkeren überregionalen Q-Austauschen und damit einhergehenden ungleichen Spannungsniveaus zu rechnen.
 - Die Bilanzungleichgewichte der regelbaren Bedarfe bedeuten ein erhöhtes Risiko für die Spannungsstabilität bei Exceptional Contingencies (EC) in hochausgelasteten Situationen.
- Um das Risiko von Spannungsbandverletzungen zu minimieren, wird regelmäßig der Einsatz betrieblicher Maßnahmen, wie bspw. auch Redispatch, durch die Netzführung geprüft.



Blindleistungsbedarfe BA 2020 (t+5) – 2024/25

Regionale Bilanzierung des Blindleistungsbedarfs*

^{*} Etwaige notwendige Maßnahmen zur Deckung der regionalen Bedarfe werden in nachgelagerten Prozessen identifiziert (z.B. Betriebliche Maßnahmen oder zusätzliche Kompensationsanlagen).



Blindleistungsbedarfe BA 2020 Delta (t+1) zu (t+5)

Regionale Bilanzierung des Blindleistungsbedarfs*

50hertz

amprion

TENNET
Taking power further

TR**⊼**NSNET BW

Bilanzungleichgewicht der Blindleistung in der Regelzone TenneT (zeitgleiche Maxima je Region)

Netz- gruppe	Stationär Spg. –senkend [Mvar]		_	og. –hebend var]	Regelbar [Mvar]		
	2021	2025	2021	2025	2021 (99%)	2025 (99%)	
D21	188	73	1346	1786	0	857	
D22	0	0	138	712	0	0	
D23	638	357	0	760	300	679	
D24	0	0	0	921	192	114	
D25	0	0	0	503	540	16	
D26	0	0	0	332	0	919	

Bilanzungleichgewicht der Blindleistung in der Regelzone TransnetBW (zeitgleiche Maxima je Region)

Netz- gruppe	Stationär Spg. –senkend [Mvar]		Stationär Spg	Stationär Spg. –hebend [Mvar]		
	2021	2025	2021	2025	2021 (99%)	2025 (99%)
D41	0	0	543	1092	0	400
D42	425	0	91	395	472	451
D43	0	0	962	886	376	438

Bilanzungleichgewicht der Blindleistung in der Regelzone Amprion (zeitgleiche Maxima je Region)

Netz- gruppe	Stationär Spg [Mvar]	-senkend	Stationär Spg	hebend [Mvar]	Regelbar [Mvar	
	2021	2025	2021	2025	2021 (99%)	2025 (99%)
D71	0	19	0	1406	0	0
D72	0	0	0	0	0	0
D73	234	309	570	390	0	0
D74	0	0	548	330	0	0
D75	240	233	1913	1253	0	0
D76	288	611	122	637	139	322

Bilanzungleichgewicht der Blindleistung in der Regelzone 50Hertz (zeitgleiche Maxima je Region)

Netz- gruppe	Stationär Spg [Mvar]	-senkend	Stationär Spg	hebend [Mvar]	Regelbar [Mvar	l
	2021	2025	2021	2025	2021 (99%)	2025 (99%)
D81	0	0	161	734	1003	1071
D82	71	102	309	544	222	701
D83	377	116	0	604	115	973
D84	496	626	0	0	257	278
D85	373	379	661	1104	215	542
D86	1275	504	0	542	0	0
D87	748	810	1	567	593	704

Fazit der Analysen zum Blindleistungsbedarf (t+5)

- Eine termingerechte Errichtung der bereits geplanten Kompensationsanlagen i.H.v. rund 20 GVAr ist angesichts der heute bereits bestehenden Probleme bei der Spannungshaltung dringend erforderlich und wirkt darüber hinaus dem Bedarfsanstieg entgegen. In einzelnen Regionen sinkt das Bilanzungleichgewicht sogar.
- Dennoch verbleiben Regionen mit signifikanten Ungleichgewichten, die zusätzliche Maßnahmen zur Einhaltung der **zulässigen Spannungsgrenzen** – Zubau weiterer Kompensationsanlagen und/oder betriebliche Maßnahmen (Redispatch) – erfordern. Weitere Abschaltungen von Kraftwerken oder ein geringer Einsatz konventioneller Kraftwerke werden diese Situation verschärfen.
 - Die zu hohen Spannungen führenden Ungleichgewichte können im Vergleich zu (t+1) gesenkt werden. In Thüringen und Bayrisch-Schwaben fehlen jedoch weiterhin Potentiale.
 - Die in Rheinland-Pfalz zu niedrigen Spannungen führenden Ungleichgewichte können im Vergleich zu (t+1) reduziert werden. Allerdings steigt bis (t+5) in beinahe allen anderen Regionen Deutschlands im Vergleich zu (t+1) das spannungshebende Ungleichgewichts zum Teil stark an.
 - Ein Anstieg des Ungleichgewichts bei den regelbaren Bedarfen (infolge der Stilllegungen von Kraftwerken gemäß der Prämissen der BA2020) kann durch den Zubau von Kompensationsanlagen vielerorts weitgehend vermieden werden bzw. ist nur in wenigen Regionen zu verzeichnen.

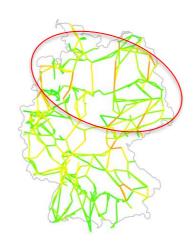
165

Nächste Schritte

- Die bisherigen Untersuchungen liefern nur bilanzielle Indikationen zum Bedarf an weiteren konzeptionellen und betrieblichen Maßnahmen für die Spannungshaltung und Wahrung der Spannungsstabilität.
- Es müssen noch detaillierte Analysen in Bezug auf die Einhaltung der zulässigen Spannungsbänder durchgeführt werden, um knotenscharfe Verletzungen zu identifizieren und konkrete Gegenmaßnahmen abzuleiten – diese Maßnahmenidentifizierung muss jeder ÜNB zunächst für seinen Verantwortungsbereich durchführen; die Ergebnisse sind anschließend im 4ÜNB-Kreis zu konsolidieren.
- Erst danach sind verlässliche Aussagen darüber möglich, in welchem Umfang weitere Blindleistungskompensationsanlagen für die Aufgaben der Spannungshaltung/Spannungsstabilität erforderlich sind.
- Gleiches gilt für zwischenzeitliche Umrüstungen von stillgelegten Kraftwerken zu rotierenden Phasenschiebern und den Bedarf an spannungsbedingtem Redispatch.
- Hinweis: Die zur Engpassbewirtschaftung eingesetzten Kraftwerke der Netzreserve tragen auch zur Spannungshaltung/Spannungsstabilität bei. Dieser Beitrag ist Prämisse für die weiteren Untersuchungen zum Blindleistungsbedarf.

Inhaltsverzeichnis / Gliederung

- 1. Aufgabenstellung und Zielsetzung
- 2. Berücksichtigung neuer politischer Rahmenbedingungen
- 3. Vorgehensweise / Methodik der Systemanalysen
- **4.** Eingangsparameter & Methodik Marktsimulation
- 5. Eingangsparameter & Methodik Flow-Based Market Coupling
- **6.** Eingangsparameter & Methodik Netzanalysen
- 7. Eingangsparameter & Methodik Stabilitätsanalysen
- 8. Identifikation der Grenzsituation
- 9. Marktsimulation
- 10. Netzanalysen
- 11. Bilanzielle Spannungs- und Blindleistungsanalysen
- 12. Fazit


BA2020 (t+1) auf einen Blick

Strommarkt

DKW 1,4 SE 0,3 DKE 0,5 NO 0 Σ 10,2 CZ 2,3 FR 2,4 AT 0,8 4,9

 Transit durch Deutschland wächst an, insbesondere aus Skandinavien nach West- und Ost-Europa

Netzengpässe

 Netzengpässe geographisch weiträumig verteilt, insbes. in Nord-Süd-Richtung

RD-Potenzial

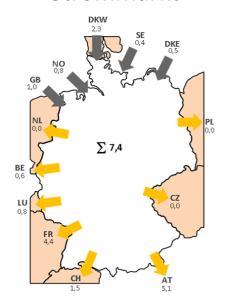
 Vollständige Nutzung des pos. RD-Potenzial von Marktkraftwerken in Südund West-DE.

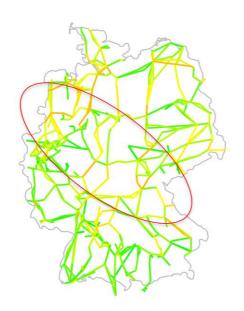
Redispatch

Dimensionierender NNF [GW]	BA2020 t+1	Vgl. BA2019 t+1
Neg. RD Wind onsh.	6,8	- 1,5
Neg. RD Wind offsh.	2,6	- 0,1
Neg. RD MarktKW	4,1	+ 0,4
Neg. RD Ausland	-	- 0,7
SUMME neg. RD	13,4	- 2,1

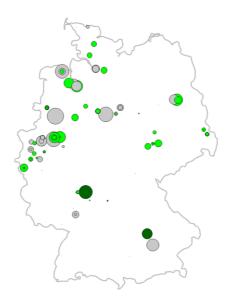
Pos. RD MarktKW	6,1	- 3,5
Pos. RD Netzreserve	5,8	+ 1,5
Pos. RD AT	1,5	+/- 0
Pos. RD Ausland	0	+/- 0
SUMME pos. RD	13,4	- 2,1

- Netzreserve-Bedarf im dimensionierenden NNF steigt auf 5,8 GW (6,6 GW installiert)
- Gesamt Redispatch-Bedarf im dimensionierenden NNF sinkt auf 13,4 GW
- Redispatch-Menge im Jahreslauf steigt auf 11,3 TWh




BA2020 (t+5) auf einen Blick

Strommarkt


 Transit durch Deutschland wächst an, insbesondere aus Skandinavien nach West- und Süd-Europa

Netzengpässe

 Netzengpässe geographisch weiträumig verteilt, insbes. in Nord-Süd-Richtung

RD-Potenzial

 Vollständige Nutzung des pos. RD-Potenzial von Marktkraftwerken in Südund West-DE.

Redispatch

Dimensionierender NNF [GW]	BA2020 t+5	Vgl. BA2020 t+1
Neg. RD Wind onsh.	4,8	-2,0
Neg. RD Wind offsh.	3,0	+ 0,4
Neg. RD MarktKW	3,3	- 0,8
Neg. RD Ausland	-	+/- 0,0
SUMME neg. RD	11,1	- 2,3

Pos. RD MarktKW	2,9	- 3,2
Pos. RD aktuelle und potenzielle Netzreserve	6,7	+0,9
Pos. RD AT	1,5	+/- 0,0
Pos. RD Ausland	0	+/- 0,0
SUMME pos. RD	11,1	- 2,3

- Netzreserve-Bedarf im dimensionierenden NNF steigt auf 6,7 GW (7,2 GW installiert)
- Gesamt Redispatch-Bedarf im dimensionierenden NNF sinkt auf 11,1 GW
- Redispatch-Menge im Jahreslauf sinkt auf 5,3
 TWh

Fazit BA2020 – Entwicklungen 2020/21 → 2024/25

Entwicklung Handel/Erzeugung:

- Deutschland wird zum Netto-Stromimporteur und insbesondere in bedarfsdimensionierenden Situationen zur "Marktdrehscheibe" für Importe aus Skandinavien.
- Die Transportaufgabe des deutschen Übertragungsnetzes nimmt infolge der Transite zu.

Entwicklung Redispatch:

- Der Redispatch-Bedarf nimmt in Höhe (-17%) und Menge (-53%) deutlich ab.
- Der Bedarf an Netzreserve nimmt dennoch zu (+26% bzw. +21% (Alternative Robustheitsprüfung) installierte Leistung)
- Weiterhin besteht kein Kontrahierungsbedarf im Ausland für die Netzreserve.

Wesentliche Randbedingungen:

- Die Bedarfsanalysen haben in den letzten Jahren wiederholt belegt: Der Fortschritt des Netzausbau ist entscheidend für die Entwicklung des Redispatch-Bedarfs.
- Die positiven Entwicklungen der BA2020 bedingen, dass der Netzausbau (BMWi-Controlling) und die Erhöhung der Transportfähigkeit des Bestandsnetzes (v.a. WAFB und Lastflusssteuerung) tatsächlich entsprechend der hier unterstellten Prämissen umgesetzt werden.
- Die Auswirkungen des Kohleausstiegs auf die Entwicklung des Redispatch-Bedarfs sind nicht eindeutig. Allerdings muss die Aufnahme systemrelevanter Kraftwerke in die Netzreserve gesichert sein, weil der Rückgang von Marktkraftwerken mit Redispatch-Potenzial höher ausfällt als der Rückgang des Redispatch-Bedarfs.

170

50Hertz Transmission GmbH

Heidestraße 2 10557 Berlin

E-Mail: info@50hertz.com

TenneT TSO GmbH

Bernecker Straße 70 95448 Bayreuth

E-Mail: info@tennet.eu

Amprion GmbH

Robert-Schuman-Straße 7

44263 Dortmund

E-Mail: info@amprion.net

TransnetBW GmbH

Osloer Straße 15–17

70173 Stuttgart

E-Mail: info@transnetbw.de

